4Sum

Problem:

Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.

Note:
Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a ≤ b ≤ c ≤ d)
The solution set must not contain duplicate quadruplets.
For example, given array S = {1 0 -1 0 -2 2}, and target = 0.

A solution set is:
(-1,  0, 0, 1)
(-2, -1, 1, 2)
(-2,  0, 0, 2)

Leetcode link
Lintcode link

My solution:

The solution is nearly the same as 3sum

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
/*************************************************************************
> File Name: FourSum.java
> Author: Yao Zhang
> Mail: psyyz10@163.com
> Created Time: Wed 11 Nov 23:48:43 2015
************************************************************************/


public class FourSum{
public ArrayList<ArrayList<Integer>> fourSum(int[] nums, int target) {
//write your code here
ArrayList<ArrayList<Integer>> result = new ArrayList<ArrayList<Integer>>();
if (nums.length < 4) return result;
Arrays.sort(nums);

// note i < nums.length - 3
for (int i = 0; i < nums.length - 3; i ++){
if (i != 0 && nums[i - 1] == nums[i])
continue;

// note j start from i + 1, but not i
for (int j = i + 1; j < nums.length - 2; j++){
if (j != i + 1 && nums[j - 1] == nums[j])
continue;

int start = j + 1;
int end = nums.length - 1;

while (start < end){
int sum = nums[i] + nums[j] + nums[start] + nums[end];
if (sum == target){
ArrayList<Integer> list = new ArrayList<Integer>();
list.add(nums[i]);
list.add(nums[j]);
list.add(nums[start]);
list.add(nums[end]);
result.add(list);
start++;
end--;

// note condition start < end
while (nums[start - 1] == nums[start] && start < end)
start++;

while (nums[end + 1] == nums[end] && start < end)
end--;
} else if (sum < target){
start++;
} else {
end--;
}
}
}
}

return result;
}
}

Related Problem:
Two Sum
3Sum
3Sum Closest