
University of Oxford

Dissertation

Using Financial Reports to Predict Stock Market
Trends With Machine Learning Techniques

Author:
Yao Zhang

Supervisor:
Dr Ani Calinescu

A thesis submitted for the degree of
Master of Computer Science

Trinity 2014
August 31, 2015

Acknowledgements

I owe my deepest gratitude to my supervisor Dr. Ani Calinescu, who are dedicated
to guide me during the entire process of this dissertation. Whenever I need a help,
she is always there. I acknowledge the dissertation could not gain this level of sat-
isfaction without her encouragement, advice and patient help. It was an honor to
work with her and follow her suggestions.

I also would like to thank my parents who support me during the study in the
University of Oxford.

Abstract

Stock markets as a fundamental component of financial markets play an important
role in the countries’ economies. The factors that a↵ect the price of stocks include
the political situations, company performance, economics activities, and some other
unpredicted events. The traditional prediction approach is based on historical nu-
merical data such as the previous trend, trading volume, earnings surprise and some
other numerical information. This thesis reviews the literature on the application
of information retrieval and machine learning techniques and proposes a framework
that uses financial reports to predict the movement of stock prices with machine
learning techniques. Deep learning or unsupervised feature learning algorithms have
recently been attracting enormous attention in the machine learning communities,
but literature on the application of deep learning in stock prediction is still limited.

In this thesis, three deep learning models were adapted into the system to in-
vestigate their applicability. They are the Stacked Denoising Autoencoders (SDA),
Deep Belief Network (DBN) and Recurrent Neural Networks-Restricted Boltzmann
Machine (RNNRBM). The first two are the classic deep learning models and the
last one has the potential ability to handle the temporal e↵ects of sequential data.
Two other state-of-the-art supervised learning models Random Forests (RF) and
Support Vector Machine (SVM) were also adapted to the problem to compare with
the deep learning models in the evaluation stage. Through the analysis on experi-
ment results, the proposed models exhibit the importance of predicting stock price
trend with containing textual information. The comparison between the perfor-
mance results of the five models shows that deep learning models have a potential
applicability in the context of stock trend prediction, especially for DBN and RN-
NRBM.

List of Abbreviations

• ANN: Artificial Neural Network

• AT: Algorithm Trading

• DBN: Deep Belief Network

• DP: Down-trend Precision Rate

• DR: Down-trend Recall Rate

• downF1: Down-trend F1 Score

• EMA: Exponential Moving Average

• MACD: Moving Average Convergence/Divergence

• PA:Prediction Accuracy

• RBM: Restricted Boltzmann Machine

• RF: Random Forest

• RNN: Recurrent Neural Network

• RNN-RBM: Recurrent Neural Networks-Restricted Boltzmann Machine

• RSI: Relative Strength Index

• SDA: Stacked Denoising Autoencoder

• SMA: Simple Moving Average

• SVM: Support Vector Machine

• Tf-idf: Term frequency-inverse document frequency

• UP: Up-trend Precision Rate

• UR: Up-trend Recall Rate

• upF1: Up-trend F1 Score

Contents

1 Introduction 8

1.1 Motivation . 8

1.2 Project Objectives . 9

1.3 Overview . 10

2 Background 12

2.1 Financial Markets . 12

2.2 Data Sources . 13

2.3 Artificial Neural Network . 15

2.3.1 Perceptron . 15

2.3.2 Multilayer Perceptron . 16

2.3.3 Back-propagation Algorithm 17

2.4 Deep Learning . 18

2.5 Building Deep Representations . 19

3 Data Pre-processing and Analysis 20

3.1 Normalizing Text . 20

3.2 Text Feature Selection . 21

3.3 Chi-square . 22

3.4 Same Day Textual Data Compression 23

3.5 Preprocessed Data Normalization 24

1

3.5.1 Tf-idf . 24

3.5.2 IDF: Inverse Document Frequency 24

3.6 Historical Data processing . 24

4 Deep Learning Models 27

4.1 Stacked Denoising Autoencoders . 27

4.1.1 Autoencoders . 27

4.1.2 Denoising Autoencoders . 28

4.1.3 Stacked Autoencoder . 30

4.2 Deep Belief Networks . 33

4.2.1 Restricted Boltzmann Machines 33

4.2.2 Deep Belief Networks . 36

4.3 The Recurrent Neural Networks-Restricted Boltzmann Machine . . 37

4.3.1 The RTRBM . 38

4.3.2 The RNN-RBM . 38

4.3.3 Combination with DBN . 40

5 Implementation 42

5.1 Implementation Overview . 42

5.2 Programming Language and External Library Used 43

5.3 Bag-of-word Selection . 44

5.4 Same Day Textual Data Compression 45

5.5 Historical Price Data Processing . 46

5.6 Model Building . 47

5.6.1 Pre-training process . 47

5.6.2 Fine-tuning process . 48

6 Experiment Results and Analysis 50

2

6.1 Evaluation Metrics . 50

6.1.1 The Confusion Matrix . 50

6.1.2 Recall and Precision Rates 51

6.1.3 F↵-measure . 52

6.1.4 Classification Performance 52

6.1.5 Prediction Accuracy . 53

6.1.6 Stability of the Model . 54

6.2 Experiment Results and Analysis of Individual Deep Learning Model 54

6.2.1 Experiment Setup . 54

6.2.2 Experiments of Stacked Denoising Autoencoder 55

6.2.3 Experiments of Deep Belief Networks 56

6.2.4 Experiments of RNNRBM-DBN 58

6.3 Empirical Results and Analysis of All Models 60

6.3.1 Evaluated with Price Prediction 60

6.3.2 Evaluated with MACD Prediction 62

7 Conclusions and Future Works 64

7.1 Conclusions . 64

7.2 Final Remarks . 66

7.3 Future Work Directions . 67

Bibliography 67

3

List of Figures

2.1 An artificial neuron . 15

2.2 Graphical Structure of a typical Neural Network 16

4.1 An Autoencoder . 28

4.2 A graphical figure of Denoising Autoencoder. An input xxx is corrupted
to x̃x̃̃x . After that the autoencoder maps it to the hidden representation
hhh and attempts to reconstruct xxx . 29

4.3 Step 1 in Stacked Autoencoders . 30

4.4 Step 2 in Stacked Autoencoders . 31

4.5 A complete architecture of stacked autoencoder 32

4.6 A Restricted Boltzmann Machine 34

4.7 An complete architecture of stacked autoencoder 36

4.8 The graphical structures of the RTRBM 38

4.9 The graphical structures of the RNN-RBM 39

5.1 Pipeline of this project . 43

5.2 Data structure of text features . 45

5.3 The process of same day textual data compression 46

5.4 The figure contains the stock price information of Apple company
from 30 May 2014 to 30 May 2015 including SMA, EMA, MACS and
RS, drawn with matplotlib library 46

5.5 Data structure of stock price information 47

5.6 Pre-training process on the data of company Citigroup Inc. (C) . . 48

5.7 Fine-tuning process on the data of company Citigroup Inc. (C) . . 49

4

6.1 Overall prediction performance indicators of SDA on some example
stocks . 55

6.2 Standard Deviation Bar Chart of various performance indicator . . 56

6.3 Overall prediction performance indicators of DBN on some example
stocks . 57

6.4 Bar Chart of Standard Deviation results for Deep Belief Networks
on various performance indicators 58

6.5 Overall prediction performance indicators of RNNRBM-DBN on some
example stocks . 59

6.6 Bar Chart of Standard Deviation results for RNNRBM-DBN on var-
ious performance indicators . 59

6.7 This figure shows the average performance indicators of each model.
Each bar represents the average performance of the corresponding
model across all stocks. For example, the first bar means the average
prediction accuracy on all stocks of the models built with SDA. . . 61

6.8 This figure shows the standard deviation of performance indicators
of each model. Each bar represents the standard deviation of the
specific performance indicator of the corresponding model across all
stocks. For example, the first bar means the standard deviation of
prediction accuracy on all stocks of the models built with SDA. . . 62

6.9 This figure shows average prediction accuracy of each model on MACD
prediction. Each bar represents the prediction accuracy of the corre-
sponding model across all stocks. For example, the first bar means
the average prediction accuracy on all stocks of the models built with
SDA. 63

5

List of Tables

2.1 Some examples of financial article source data [19] 13

2.2 Type of events in 8-K reports from http://en.wikipedia.org/wiki/
Form 8-K . 14

2.3 Example of historical price data . 14

5.1 Information needed to calculate Chi-square 44

6.1 An example of Confusion Matrix 51

6.2 Classification scenario 1 . 51

6.3 Classification scenario 2 . 51

6.4 Test prediction accuracy rates for stock price prediction 61

6

http://en.wikipedia.org/wiki/Form_8-K
http://en.wikipedia.org/wiki/Form_8-K

List of Algorithms

1 FeatureSelection . 22
2 Denoising Autoencoder Training . 30
3 Unsupervised preTrain SDA . 31
4 Supervised FineTuning SDA . 32
5 RBM training . 35
6 DBN Training . 37
7 RNN-RBM Training . 39
8 Build RNN-RBM . 40
9 RNNRBM-DBN Layer Setup . 41

7

Chapter 1

Introduction

1.1 Motivation

Financial markets are nonlinear dynamic and complex systems which contain a sig-
nificant level of noise, but they do not behave randomly [21, 50]. Stock markets
as a fundamental component of financial markets play an important role in the
countries’ economies. From the process of stock market trading, companies can
raise funds to invest in their technology and infrastructure for their development,
and the stockholders can obtain extra assets from dividends, as additional income
[59]. There are many additional factors that cause fluctuations of stock price move-
ment, such as political situations, company performance, economic activities and
other unexpected events, which make the stock trends nonlinear, uncertain, and
non-stationary [40]. Hence, it is quite di�cult to predict stock market prices and
their direction, so the investors must usually monitor the behaviour of the stock
prices and pay attention to recent news in order to avoid buying risky stocks with
an overrated price and to make correct stock trading decisions. To manage this dif-
ficulty, data mining and machine learning techniques may be used to find patterns
in the price time series, which can then be used to predict the movement of the
current stock prices [59].

Algorithmic trading (AT) refers to using sophisticated algorithms to perform all
or some parts of the trade cycle automatically[76]. The trading algorithm can be
assumed to access historical and current data. Stock market prediction is a core
component of the algorithm trading research area, which mainly focuses on the
stock trend prediction [76]. In addition, machine learning is an active research area
that attracts increased interest, and which has been applied to stock prediction with
some degree of success. A large number of applications have shown supervised ma-
chine learning models such as Genetic Algorithms [38, 51], Support Vector Machine
[33, 34, 37, 60], Artificial Neural Network [25, 58, 69] and Random Forests [44, 81]
can be useful tools to predict the movement trend of stock prices training on the
time-series price data, due to their ability to handle non-linear systems. However
most of them have still not given su�ciently satisfactory results with very high
accuracy and stable performance on stock prediction [2]. Some recurrent versions

8

of neural networks with feedback, such as [32, 39, 49], have also been tried. They
were applied directly on raw data rather than focusing on the feature selection
step, like other papers [77]. Thus it can be seen that there is still plenty of room
to improve the performance of existing stock prediction models for more accurate
decisions and with lower risk of investment. If stock price prediction models could
combine some additional information which a↵ects the stock markets such as finan-
cial news articles, public sentiment on the social networks, domain knowledge of
stock markets, trading volumes etc., a higher accuracy of the prediction could be
achieved [2]. Previous research studies on sentiment analysis of Social media web-
sites, such as Twitter, Facebook etc., to predict stock market behaviour have had
greater and lesser degrees of success. Among them, [12, 16, 54, 71] have obtained
some notable results. However, the volumes of Twitter data are so significant that
it is not realistic to process them without a supercomputer.

The limited success of applying the state-of-art machine learning techniques to
stock market prediction indicates that we have to add more useful information for
better predictions and need more powerful models to fit such complex and high-
dimensional combined data in the future [42]. When some significant events appear,
they may have profound impacts on the stock markets. Then models constructed
based on only numerical data are insu�ciently reliable in the prediction of the
stock index movement. However, this event information would not exist in the
past numerical information, but in the financial articles. The importance of incor-
porating textual information to perform stock prediction has been shown recently
[48]. A natural approach is to add the information of financial news articles to the
stock market prediction models, and some e↵orts and contributions have already
been made in this direction [24, 35, 45, 46, 55, 70]. Deep learning or unsupervised
feature learning algorithms have recently been attracting enormous attention in
the machine learning research communities, because they achieved great success in
addressing some problems, particularly in computer vision [17, 41] and natural lan-
guage processing research [13, 20, 80]. They can automatically learn useful features
from a large set of data by unsupervised feature learning in the pre-training process,
which is a better way to represent the nature of the data [6]. Additionally, several
research studies have shown that unsupervised feature learning and deep learning
have the potentially powerful ability to solve time-series modelling problems [42].
Therefore deep learning can fit the description of the challenge of stock market pre-
diction, and provide a new valuable approach to this field. There are several deep
learning models in active research. In this thesis, SDA, DBN and RNNRBM are
adapted to the problem. To compare the performance of deep learning and classi-
cal machine learning models on solving this problem, two widely used and powerful
models Support Vector Machine and Random Forests are adapted into solving this
problem.

1.2 Project Objectives

The main objective of this project is to adapt three deep learning models (SDA,
DBN and RNNRBM) into the context of the stock trend prediction problem with

9

textual financial report as training data, to investigate the suitability and e�ciency
of these models and the importance of textual analysis for stock movement predic-
tion. The deep learning models are the Stacked Denoising Autoencoders (SDA),
Deep Belief Network (DBN) and Recurrent Neural Networks-Restricted Boltzmann
Machine (RNNRBM). The applicability and limitation of these three models can
be investigated during the process of implementation and evaluation. The first two
are the classic unsupervised feature learning models and the last one proposed in
[14] has the potential ability to handle the temporal e↵ects of significant finan-
cial events. Two other state-of-the-art supervised learning models Random Forests
(RF) and Support Vector Machine (SVM) will be compared unsupervised feature
learning models. This objective also can be separated into the following several
sub-objectives:

• Data processing
Design a pipeline of text processing for this problem and review the theory of
each technique used in the pipeline. Implement the algorithms according to
the reviewed theory.

• Model Building
Review the theory background of three learning models, then design the the-
oretical details of each proposed model and build complete learning models
to investigate the applicability of stock price prediction.

• Conduct experiments and evaluate the results
Design some evaluation criteria for prediction performance of proposed mod-
els. First, evaluate learning models individually. All of these three deep
learning models need to be compared with each other and some other classic
machine learning models together. Both price and financial indicator pre-
diction should be evaluated. Some most widely used indicators such as the
Simple Moving Average (SMA), Exponential Moving Average (EMA) and
Moving Average Convergence Divergence (MACD) etc [1] can be selected to
evaluate the performance.

1.3 Overview

• Chapter 2: Background
In this chapter, the financial market background is introduced first and then
data source used are described. Following that Artificial Neural Networks are
introduced which is a main structure of deep learning models. After that deep
learning is introduced.

• Chapter 3: Textual Articles Preprocessing and Analysis
In this chapter, several types of pre-processing steps are introduced, includ-
ing natural language processing and information techniques used on financial
reports and the mapping from historical data to training data.

10

• Chapter 4: Build Deep Learning Models
In chapter 4, three deep learning models adapted to solve the problem are
introduced respectively. The components of each model and detailed training
algorithms are presented. The key implementation details are also described.

• Chapter 5: Evaluation Metrics and Experiment Results
In chapter 5, the prediction performance indicators are defined first. The
results are fully evaluated on each model. At last, the models are compared
and evaluated together. The purpose of these experiments are: 1) to evaluate
the importance of textual data on the trend of stock prices. 2) to compare the
performance of the adapted deep learning models and other classic machine
learning models such as SVM and RF.

• Chapter 6: Conclusion
In this last chapter, the contributions of this project are reviewed and the
corresponding theoretical analysis are briefly summarised. After that the
limitations of this project are discussed. Finally, several future directions are
proposed.

11

Chapter 2

Background

This chapter provides a brief background introduction of key concepts relevant to
this thesis and theory background used in this project. Section 2.2 describes what
data source we chose to use and why we chose it. Section 2.3 introduces the theory
and structure of Artificial Network (ANN) and how to train it. It’s multilayer
learning structure is the basic structure of the deep learning models. In Section 3.2,
Chi-square test is introduced, which is used to select important bag-of-words which
are most related to the trend of stock prices.

2.1 Financial Markets

Financial markets are generally used to describe markets in which people trade fi-
nancial securities and communities with a low transaction cost. The prices reflect
the supply and demand. Stock and currency exchange are two main components of
financial markets. In this project, financial markets mainly refer to the stock mar-
ket. This definition of usage is quite common can be found in some research papers,
such as [63, 75]. A stock market has two main components which are tradable as-
sets and traders. The traders aim to obtain the maximum gain from the market by
trading assets according to their experience. The main operation is stock exchange
in the stock market.

Stock is issued by a cooperation which aims to raise money instead of having a
loan from a bank. The stock is partitioned into shares which can be traded in the
stock market. In return, the companies need to pay a certain amount of profit to
the holders of the stock (shareholders). A shareholder has a fraction of ownership
on the assets and earnings of the company. Ownership depends on the amount
of shares the holder own relative to the whole shares. A cooperation may declare
distinct types of shares. Each type of shares can have a specific share value or priv-
ileges. Additionally, the per-value price of a stock can change continuously. Some
shareholders sell the shares when the price of stock is higher to earn money. Thus
it is important to estimate the future trend of the stock price for the traders. The
traders can estimate the stock price based on many criteria such as the trading vol-

12

ume, the previous trend of stock price, important news about the company, public
opinions on the social network and so on. Share prices change according to the
change of supply and demand, and there is a mechanism to associate them. This
sort of trading is more risky than earning form annual profit, because the prices are
highly unpredictable.

Algorithmic trading (AT) generally refer to a trading system which performs all
or some parts of the trade cycle automatically in the financial market by heav-
ily replying on complex mathematical models and sophisticated computer program
[76]. It consists of six stages which are pre-trade analysis, trading signal prediction,
trade operation, risk management, post-trade analysis and asset allocation. Each
of them could be a research field of the AT, and in this thesis, the trading signal
generation is our main research area. The traditional stock prediction is based on
historical data and trading volume. In this study, financial textual articles are used
to predict the trend of stock prices.

2.2 Data Sources

The amount of available textual data related to stock markets is huge, including
various forms such as government and shareholder reports or financial news con-
cerning the prospect of a company. Some examples of financial article source data
are shown in Table 2.1. [19]

Table 2.1: Some examples of financial article source data [19]

Textual Source Types Examples Description
8K Reports on significant changesCompany

Generated Sources
SEC
Reports 10K Annual reports

Recommendations Buy/Hold/Sell assessmentsAnalyst
Created Stock Alerts Alerts for share prices

Financial Times Financial News storiesNews
Outlets Wall Street Journal Financial News stories

PRNewsWire Breaking financial news articlesNews
Wire Yahoo Finance 45 financial news wire sources

Independently
Generated Sources

Discussion
Boards

The Motley Fool
Forum to share stock-related
information

In this thesis, I chose 8-K financial reports which is used to notify the investors
when there is a significant event happened such as change in accountants, elec-
tions of director, asset movement or bankruptcies (more information are included
in Table 2.2). Lee et al. [48] publicly provide all reports of S&P 500 companies be-
tween 2002 and 2012 for researchers in the corpus: http://nlp.stanford.edu/pubs/
stock-event.html. This corpus was used as the experiment data.

13

Material definitive agreements not made in the ordinary course of business
Bankruptcies or receiverships
Director is elected
Director departs
Asset movement: acquisition or sale
Result of operations and financial condition
Material Direct Financial obligations (bonds, debentures)
Triggering events that accelerate material obligations (defaults on a loan)
Exit or disposal plans
Material impairments
Delisting or transfer exchange notices
Unregistered equity sales
Modifications to shareholder rights
Change in accountant – and good idea to explain why
SEC investigations and internal reviews
Financial non-reliance notices
Changes in control of the company
Changes in executive management
Departure or appointment of company o�cers
Amendments to company Governance Policies
Trading suspension
Change in credit
Change in company status
Other events
Financial exhibits

Table 2.2: Type of events in 8-K reports from http://en.wikipedia.org/wiki/Form
8-K

The historical price data were extracted fromYahoo! Financ (https://uk.finance.yahoo.com).
The data set consists of 10 years historical price information of the S&P500 compa-
nies. The information includes date, volume, opening price, closing price, adjusted
closing price, high price, low price like the Table 2.3:

Table 2.3: Example of historical price data

Date Open High Low Close Volume Adj Clos
2013-02-01 45.08 45.66 44.54 45.29 2827800 45.2
2013-01-31 44.35 44.87 44.31 44.78 3383300 44.78
2013-01-30 44.58 44.89 44.17 44.40 2942700 44.4

14

http://en.wikipedia.org/wiki/Form_8-K
http://en.wikipedia.org/wiki/Form_8-K
https://uk.finance.yahoo.com

2.3 Artificial Neural Network

Artificial Neural Networks (ANNs) [53] were inspired by the functionality of the
‘human brain where nearly billions of neurons are connected to process the in-
formation and respond the input signal. Researchers have given computers some
certain levels of intelligence such as language translation and pattern recognition
by using artificial neural network. This section will give a brief review of ANNs.

2.3.1 Perceptron

The linear regression model consists of a linear combination of fixed non-linear
functions with a set of fixed input data as below Eq 2.1 [11]:

y(x,w) = f

MX

j=1

wj�j(x)

!
(2.1)

where M is the number of inputs, f is a non-linear activation function and �j is
a nonlinear basis function whose parameters can be adjusted along with the ad-
justment of coe�cient wj . Neural Networks use the similar form of Eq 2.1, which
is composed of “neurons” that can be viewed as non-linear functions of a linear
combination of the input data.

A single neuron consists of inputs which are multiplied by corresponding weights
and then combined a non-linear function usually called activation function that
generates the output. The graphical structure is shown in in Figure 2.1 .

x1

x2

x3

Output y

w1

w2

w3

Figure 2.1: An artificial neuron

The mathematical expression of a single neuron for the j th neuron is shown below
in Eq 2.2. It represents a linear combination of inputs from x1 to xD passed to the
activation function f , which is usually the sigmoid or tanh function.

aj = f

DX

i=1

W
(1)
ji xi + x0

(1)

!
(2.2)

15

where D means the number of input, j means it is the j th neuron and the subscript
(1) means it is the first layer, so w

(1)
ji means the weight between the i th input and

neuron j in the first layer, and x
(1)
0 means the bias.

2.3.2 Multilayer Perceptron

Multilayer Perceptron [64] is a more sophisticated model with multiple layers, which
consists of an input layer, an output layer and many hidden layers. Its graphical
structure is shown in Figure 2.2. It is a type of network, whose nodes in the same
layer do not connect to each other. There is also no loop in the entire model. In
addition, it can be viewed as a feed-forward network.

Input x1

Input x2

Input x3

+1x0
+1

Output

Hidden
layer

Input
layer

Output
layer

Figure 2.2: Graphical Structure of a typical Neural Network

There might be multiple hidden layers, and the output of the hidden layer cells hj
corresponds to an input of the next layer, with output vector h

(b�1) of the layer
b � 1 as the input of layer b. The output h

(b) can be computed from the weight
matrix W

(b) and bias vector z(b), using Eq 2.3.

h

b
= f (W(b)

h

(b�1)
+ z

(b)
) (2.3)

The output layer is used to make a prediction h

(k) and the loss can be computed
with a loss function L(h(k)

, y) combined with the actual label y . Each unit in the
output layer can use a logistic sigmoid function shown in Eq 2.4 as the activation
function for multiple binary classification problems.

�(a) =
1

1 + exp(�a) (2.4)

16

The negative conditional log-likelihood (NLL) is often used to compute the loss,
which is L(h(k)

, y) = logP(Y = y |x). NLL is expected to be minimized.

2.3.3 Back-propagation Algorithm

The back-propagation algorithm was introduced in [79, 65]. The weight matrices
should be initialized randomly first by a Gaussian distribution as the following
formula:

G (Wij ,µ, �) =
1p
2⇡�2

e
(Wij�µ)2

2�2 (2.5)

where µ and � are the mean value and variance of the Gaussian distribution re-
spectively. Then the feed-forward phase is executed to compute all the activations
and output of each layer. The di↵erence between the output and target value are
calculated as cost error. Next the back-propagation phase is fired. In this process,
the error will be back propagated to each layer to adjust the weights. Then feed-
forward and back-propagation will be further iterated until the error converges to
a certain desired level.

Assume we are given the following training data:

• D = (X ,Y)

• X = [xxx (1),xxx (2), ...,xxx (n)] 2 Rn⇤m is a set of input data of the model, in which
xxx (i), (i 2 |D|) is a single input instance.

• Y = [yyy (1)
,yyy (2)

, ...,yyy (n)
] 2 Rn is the label set of the training data, in which

yyy (i)
, (i 2 |D|) is a single target value the model should output.

After the feed-forward process, we obtain the weight matrix WWW and bias vector bbb,
and ✓ = [W , bW , bW , b]. Using these, the input data X and activation function, we can
obtain the predicted values bY .

The cost between prediction output and target label can be calculated with the
average value of the negative log-likelihood (NLL) of the prediction under the tar-
get distribution Y , and the regularization term which controls the magnitudes of
weights to prevent from overfitting, according to Eq. 2.6, 2.7

cost =
1

|D|L(✓ = {W , bW , bW , b},D) + regularization (2.6)

=

1

|D|

|D|X

i=1

log(P(Y = ŷŷ̂y (i)|xxx (i),W , bW , bW , b)) +
�

2

lX

i=1

|Wi |22 (2.7)

where � is the regularization coe�cient and l is the number of layers of the network.
The above function can be minimized by the back-propagation algorithm. For each

17

layer i , we calculate the output hhh(i) from input hhh(i�1) as equation 2.3. Then perform
back-propagation. For the output layer, compute:

���l = �(yjyjyj � hhh(l))� f 0(W(l)
h

(l�1)
+ b

(l)
) (2.8)

where � means the element-wise multiplication. f 0 means the derivative of activa-
tion function f . For layer i 2 [2, l � 1], compute the derivative:

�i�i�i = (WWW i���i+1)� f 0(W(i)
h

(i�1)
+ b

(i)
) (2.9)

Finally, given learning rate ⌘, layer i , weight matrix and bias vector can be updated
by the following formula with ���i+1:

WWW (i)
new =WWW

(i)
old � ⌘(hihihi ⇤ �i+1�i+1�i+1 + �WWW (i)

) (2.10)

bbb(i)new = bbb
(i)
old � ⌘���i+1 (2.11)

‘

2.4 Deep Learning

Nowadays, the performances of machine learning models heavily rely on the repre-
sentation of data or feature selection steps rather than just the choice of machine
learning algorithms. Thus much e↵ort is applied on preprocessing pipelines such
as feature selection. Even though some specific domain knowledge can be used to
help design the representation of data, the motivation of Artificial Intelligence needs
more powerful representations of features. Deep Learning also called unsupervised
learning, is a relatively new research field of machine learning which can learn multi-
ple levels of abstraction and representation of features directly from data. It aims at
learning feature hierarchies with higher level features formed by the composition of
lower ones. The multiple levels structures allow to build complex functions which
take data as input and output the result directly without depending on features
crafted by humans [4].

Deep learning achieved many successful results on some problems, such as im-
age classification [17, 41], semantic parsing [13] and speech recognition [20]. Deep
architecture may express the complex distributions more e�ciently with better per-
formance on challenging tasks [8, 4]. The hypothesis that the composition of addi-
tional functional levels can give more powerful modeling capacity has already been
proposed for a long time [28, 66]. However, the training process of deep architec-
ture was proven to be very di�cult, until some successful approaches of [7, 30, 29]
for training stacked autoencoder and DBN occurred. One key idea behind them
is to train the deep architecture layer by layer by unsupervised learning, which is
also called unsupervised feature learning. Each layer will generate a more abstract
representation of the observed layer by doing a local optimization. Unsupervised
feature learning can learn useful features automatically and directly from the data
set by unsupervised learning without given specific features defined by human. The

18

unsupervised learned features are more natural with less information lost [6]. Some
deep learning models also have a potential powerful capacity of solving time-series
problems [42], which is another reason that makes deep learning suitable for stock
trend prediction. Therefore deep learning can provide a new potential and powerful
approach to improve stock prediction.

2.5 Building Deep Representations

Experimental results show that it is much harder to train a deep architecture than
training a shallow one [8, 22]. The rapid recent growth and success of deep learning
owe to a breakthrough initiated by Geo↵ Hinton in 2006 and quickly followed up
by some papers [29, 8, 61]. Greedy layer wise unsupervised pre-training as a central
idea was proposed. It means just one layer of the hierarchy is trained at one time
by unsupervised feature learning to learn a new transformation of data with the
previous layer output. Finally, the set of pre-trained layers is combined with a stan-
dard supervised classifier such as Support Vector Machine, Logistic Regression or as
initialization for a deep learning model such as a Stacked Denoising Auto-encoder
or Deep Belief Network. Experiments show that the layer-wise stacking can attain
a better feature representation in most time [43]. Although it is not di�cult to
combine single layers pretrained by unsupervised learning into a supervised model,
it is not very clear how the single layers should combine to form a better unsuper-
vised model [5]. One approach is to stack pre-trained RBMs (section 4.2.1) into
DBN (section 4.2.2).

In this chapter, we briefly introduced the relevant theoretical background. Next
two chapters, we will present the design and methodology used in this project on
textual article pre-processing and the deep learning models we built. We first move
to the methodology used for the data pre-processing stage.

19

Chapter 3

Data Pre-processing and Analysis

In this project, we used financial reports with natural language processing tech-
niques and three important deep learning models, respectively, to build stock mar-
ket prediction models. For the text-mining process, two issues were considered: (1)
appropriate news article with relevant textual data content and (2) an approach
to associate the mining textual data with historical time-series prices [35]. First
we had to find appropriate news articles. Lee et al. [48] generated and released a
corpus that aligns the financial events of all S&P companies between 2001 and 2013
with changes in stock prices, which can be used as the source data for this project.
The aligned data focus on the 8-K reports which listed American companies are
required to file when ever a significant event happens [48]. Second we associated
the textual financial events with the time series price data. In this stage, several
Natural language processing and information retrieval techniques were used, for ex-
ample Tf-idf and Chi-square test [52].

Natural language processing and information retrieval techniques are crucial to
the success of this thesis. It is important to get the most useful text information
from the data set. It is also necessary to transform the price information to the
predicted. Two types of labels are used to study the performance on di↵erence
types of predictions. One is the e↵ect of the report directly on the stock price and
the other one is the e↵ect on the stock indicators. All of them together constitute
the preprocessing step. In section 3.1, the way we normalize the text in to the
same standard is introduced. Section 3.2 presents the method we used to select
the bag-of-words as training data. In section 3.4, we talk about how did we unifies
the di↵erent articles in the same day. The normalization method we used on the
training data is described in section 3.5. Finally we discuss the transformation price
data processing steps to di↵erent types of training labels in section 3.6.

3.1 Normalizing Text

In order to use the information of textual articles, we need to transform them to
word vectors. First we need to preprocess the raw textual data in a normalized form.

20

Some not useful unigrams such ”<DOCUMENT>” and ”FILE:” are removed from
the files. After that each word should be lemmatized to be reduced to the stem and
prevent from duplicated words in di↵erent forms.

Stemming and lemmatization (or lemmatization) in linguistics and information re-
trieval is the process of transform the inflected form to its root or stem form. For
example for grammar reason, di↵erent forms of words with similar meanings such as
fly, flies and flying are often used in documents. The aim is to reduce the inflectional
forms and associate the various forms to the base word [52], for example:

dog, dogs, dog’) dog

am, is, are) be

For example, if the input text is : “In addition, the Board approved cancelling
the Company’s non-shareholder approved option plan upon the completion of the
employee exchange program and shareholder approval to amend the remaining
shareholder-approved executive o�cer stock plan so it can be used to grant op-
tions to all employees.” (from 8-K report).

The result will be: “In addition , the Board approve cancel the Company non-
shareholder approve option plan upon the completion of the employee exchange
program and shareholder approval to amend the remain shareholder-approved ex-
ecutive o�cer stock plan so it can be use to grant option to all employee .”

Then every words in the article were translated to the lower case. The digit num-
bers and some stop words were removed such as I, have, a, do, his, to... which
are not meaningful for the classification. The result of the example above will be-
come to: “ addition board approve cancel company non-shareholder approve option
plan completion employee exchange program shareholder approval amend remain
shareholder-approved executive o�cer stock plan use grant option employee”

3.2 Text Feature Selection

Feature selection, also known as variable selection, is the process of selecting a subset
of relavant features to train the learning model [26]. For the text classification,
feature selection often refers to selecting the terms occurring in the training set as
features to do text classification with two main purposes [52]. First it can decrease
the size the of training vocabularies, so the e↵ectiveness of training can be improved
with a much shorter training time. Second, it can eliminate some noise data which
may have a negative e↵ect on the training result to increase the accuracy and avoid
overfitting. Text feature selection can be viewed as a process of replacing a complex
classifier training on all words occurred with a simpler one training only on selected
relatively useful words. The text feature selection in this project refers to bag-of-
word selection. The basic text feature selection algorithm is shown in Algorithm 1.
To select text features, we need to extract all the unique vocabularies in a set first,
without duplicated words:

21

• {management, improve, ... , phone}

Then for each class and each term in the vocabulary set, the utility score of the
term were computed for the given class. Then store the scores with term as a key
in a feature dictionary (or map, table):

• {’four’: 0.196, ’bookrunning’: 8.478, ’increase’: 10.811, ... , ’eligible’: 4.236}

The feature dictionary were sorted by comparing those scores in a decreasing order.
Then take the top 1000 words in the feature dictionary as the selected features, and
discard the other terms not used in the classification.

• {’e↵ectively’ : 55.491, ’combine’ : 50.727, ’entirely’ : 48.416, ... , ’priced’ :
9.057}

The function ComputeUtilityScore is a most significant part, because the bag-
of-words are selected based on this returned value. Mutual information and Chi-
square are two most popular algorithms in information retrieval, which can be used
as ComputeUtilityScore function. In this project, Chi-square [52] was chosen
as the feature selection algorithm.

Algorithm 1 FeatureSelection

1: procedure selectFeatures(documents, class, number)
2: vocabulary extractVocabulary(documents)
3: featureList {}
4: for each term 2 vocabulary do
5: scoreterm,class ComputeUtilityScore(document, term, class)
6: Append(featureList,{term : scoreterm,class})
7: SortFeaturesWithValueInDecreasingOrder(featureList)
8: end for
9: return TopLargestFeatures(featureList,number)
10: end procedure

3.3 Chi-square

In this project, the Chi-square test is used to select related words which had most
significant e↵ects on the stock price for each stock. Chi-square denoted �2 [52] is a
popular feature selection approach in information retrieval. In statistics, �2 test is
used to test whether two events A and B are independent, which means:

P(AB) = P(A)P(B) (3.1)

In the feature selection step of information retrieval, the two events are the oc-
currence of term and occurrence of class. Hence it means we need to calculate the

22

degree of relationship between a term and a document class. The value can be com-
puted using Eq 3.2, then we can rank the unique term t by the quantity �2

(D, c , t)
for all classes.

�2
(D, c , t) =

X

zc2{0,1}

X

zt2{0,1}

(Oztzc � Eztzc)
2

Eztzc

(3.2)

where D is a document set which contains all documents. t means a term, c means
a class. zt = 1 means the term occurred in a document and zt = 0 means the
document do not contain the term. zc = 1 means the document belongs to the
class c and zc = 0 means the document is not in class c . Oztzc is the observed
occurrence times in D and Eztzc is the expected frequency. For example, O11, means
how many documents contains t and belongs to the class c and O01 means how
many documents do not contain t but belongs to the class c . The E11 can be
calculated by the following formula Eq 3.4 below:

E11 = O ⇤ P(t) ⇤ P(c) (3.3)

= O ⇤ O11 ⇤ O10

O
⇤ O11 ⇤ O01

O
(3.4)

Some implementation details are shown in section 5.3

3.4 Same Day Textual Data Compression

As mentioned before, a training example is a vector of a specific size, which consists
of 0 and 1. Each attribute of data represents whether a specific important word
has been occurred in the corresponding article. For a specific vector, the amount
of occurred important words can be very small, which led to the training vector
very spare, which means that there is many 0s with a small amount of 1s. In
addition, there may be several articles in the same day, but we only can get one
financial prediction for that day. Hence the word vectors in the same day need to be
compressed and unified into one input vector. Boureau et al. [15] used theoretical
analysis to show that feature pooling can transform the local or global ’bag of
features’ to more compact and usable representation in a way that retain the useful
information while discarding unassociated details . Lavrenko et.al [47] shows a
spatial pyramid pooling model can increase the performance by pooling rather than
a plain bag of feature of a whole image [84], which also shows the importance of
the spacial structure after pooling. Jarrett [36] have experimentally shown that
pooling plays an very important role in the unsupervised pre-training steps if the
training data is not large enough, and good results can be attained when suitable
pooling apporach is used. In this project, the word vectors of a day can be viewed
as an image, which need to be unified into one feature vector. We used two pooling
methods which are average-pooling (Equation 3.5) and max pooling (Equation 3.6)
to unify the text word vectors.

fa(v) =
1

n

nX

i=1

vi (3.5)

23

fm(v) = maxivi (3.6)

The implementation details of this section are introduced in section 5.4.

3.5 Preprocessed Data Normalization

After pooling, we can obtain a matrix in which each row represent a feature vector
related to a specific document. In order to be able to compare di↵erent documents,
each row should be normalized into the same standard, which can be done with the
Tf-idf weighting scheme.

3.5.1 Tf-idf

Tf-idf [72] is an abbreviation of term frequency-inverse document frequency, which is
a weight widely applied in information retrieval tasks. The weighting scheme mea-
sures the importance of a word in a selected dictionary to a document in proportion
to the number of times a term occur in a document but inversely proportional to
the frequency of documents with the term in it across the whole corpus.

3.5.2 IDF: Inverse Document Frequency

IDF measures the importance of a term. For example, some word such as ’financial’,
’8k’ may appear many times but have not much importance. Hence it is necessary
to rescale the weight of each word. Each value of the word should multiply by IDF.
The formula of idf can be represented as Equation 3.7:

idf (t, d ,D) = log

|D|
|{d 2 D|t 2 d}| (3.7)

where t represents the terms, d means a feature vector of a document and D is the
whole document set which consists of feature vectors of all documents. |D| means
the cardinality of the set of whole documents. |{d 2 D|t 2 D}| means the number
of documents d with term t in it. Then we need to normalize each value of the
feature vectors and scaled by idf via using Equation 3.8.

R(t, d ,D) =

dt �mindi2d di
mindi2d di �maxdi2d di

⇤ idf (t, d ,D) (3.8)

3.6 Historical Data processing

The price change for a single day is not su�ciently representative because it con-
tains too little information for a time series data set, hence some financial indicators

24

are needed. This is because, using the indicators, we can understand the trend of
stock price in long or short term by calculating recent changes of corresponding
indicators[18]. Moving Average Convergence Divergence (MACD) [3] for each day
can be computed and then used to predict the 3next day’s MACD to better evalu-
ate the inflections of 8-k reports to the stock market. Indicators are also useful to
visualize the stock trend and market information.

The indicators Implemented in this project are presented next:
Simple Moving Average (SMA) & Exponential Moving Average (EMA)

Moving Average is one of the most widely used stock indicators, because it is easy
to be constructed, quantified, understood and tested. The Simple Moving Average
(SMA) calculates the average price of a stock over a specific period. SMA [57] can
be calculated by equation 3.9, in which i is the price index of current day, n is the
length of the time period and p with index j means the price of day j.

SMA(i , n,p) =
1

n

iX

j=i�n+1

pj (3.9)

But there are two criticisms questioning its usefulness. One is that only the specific
period is taken into account. Another one is that every day’s price is given the same
weight during the period, but some analysts think the recent price should be given
a heavier weighting.

Exponential Moving Average (EMA) [57] is similar to SMA except it addresses
the two problems associated with SMA. First, a heavier weight is given to more
recent price actions, which means EMA is a weighted moving average. With less
importance assigned to the previous price data, it does include calculation in all the
data through the whole life of the instrument . The calculation function is given
by Equation 3.10.

EMA(i , n,p) = pi ⇤ k + EMA(i � 1, n,p) ⇤ (1� k)

k =

2

n + 1

(3.10)

Moving Average Convergence/Divergence (MACD):

MACD [3] was developed by Gerald Appel. It measures the di↵erence between
a long-term and short-term EMA with a dual moving average crossover approach.
There two lines can be displayed on the screen. The faster line (MACD line) is
calculated by the di↵erence of two EMA of adjusted closing price, usually are 12
and 26 days, originally designed for buy signal. Convergence signal will occur when
MACD closed to zero and divergence signal when MACD moved far way from zero.
And the slower line (Signal line) can be calculated by a 9 period EMA of MACD
originally designed for sell signals. However, they are usually in all instances by
most users. The MACD histogram is the di↵erence between the MACD line and
signal line. The calculation formula can be displayed in the Equation 3.11

MACD(i) = MACDline(i ,p))� Signalline(i) (3.11)

25

where

MACDline(i ,p) = EMA(i , 12,p)� EMA(i , 26,p) (3.12)

Signalline(i) = EMA(i , 9,MACDline(i ,p)) (3.13)

Relative Strength Index (RSI)

The RSI was first developed in [82]. It is a momentum oscillator that measures
the seed of movement of stock prices which are scaled within 30 to 70. If the index
is greater than 70, it will be considered as overbought, instead if the index is less
than 30, it will be considered as oversold, and then a signal of trend reversal will
be given. The actual formula is calculated as Equation 3.14:

RSI = 100� 100/(1 + RS)

RS =

Average of x days’ up closes

Average of x days’ down closes

(3.14)

This chapter introduced the methods we used in pre-processing steps, including the
textual articles pre-processing, bag-of-words selection, same day article unification,
data normalization, and historical price data processing. In Chapter 4, we introduce
three deep learning models we adapted to the stock price prediction problem.

26

Chapter 4

Deep Learning Models

Deep learning have been introduced in section 2.4 and 2.5. In this thesis, three
deep learning models were adapted to the context of the stock trend prediction
problem to investigate their suitability and e�ciency. They are Stacked Denoising
Autoencoders (SDA), Deep Belief Network (DBN) and Recurrent Neural Networks-
Restricted Boltzmann Machine(RNN-RBM) [14]. During the implementation of
the deep learning models, theano [10] was used, which is a python library allowing
the user to e�ciently define mathematical expressions involving multi-dimensional
arrays on GPU, and prototype new machine learning models without unnecessary
implementation overhead. Two other classical machine learning methods, SVM
and Random Forests, are also used to build prediction models, which would be as
a comparison baseline used against the deep learning models. In this chapter we
introduce the theory and implementation of the deep learning models which we
adapted to the stock prediction problem.

4.1 Stacked Denoising Autoencoders

4.1.1 Autoencoders

An autoencoder [4] is a network whose graphical structure is shown in Figure 4.1,
which has the same dimension for both input and output. It takes an unlabeled
training examples in set X = {x1x1x1,x2x2x2, ...,xnxnxn} where x ix ix i 2 [0, 1]

d is a single input and
encodes it to the hidden layer hhh 2 [0, 1]

z by linear combination with weight matrix
WWW and then through a non-linear activation function. It can be mathematically
expressed as hhh = a(WxWxWx + bbb), where bbb is the bias vector.

27

x1

x2

x3

x4

x5

+1

+1

bx1

bx2

bx3

bx4

bx5

Input
layer

Hidden
layer

Output
layer

Figure 4.1: An Autoencoder

After that the hidden layer representation will be reconstructed to the output layer
bxbxbx through a decoding function, in which bxbxbx has a same shape as xxx . Hence the decod-
ing function can be mathematically expressed as bxbxbx = a(W 0hW 0hW 0h+bhbhbh), whereW 0W 0W 0 can be
W 0

= W TW 0
= W TW 0
= W T called tried weights. In this project, tied weights were used. The aim of

the model is to optimize the weight matrices, so that the reconstruction error be-
tween input and output can be minimized. It can be seen that the Autoencoder can
be viewed as an unsupervised learning process of encoding-decoding: the encoder
encodes the input through multi-layer encoder and then the decoder will decode it
back with the lowest error [30].

To measure the reconstruction error, traditional squared error L(x ,bx) = kx � bxkL(x ,bx) = kx � bxkL(x ,bx) = kx � bxk
can be used. One of the most widely used way to measure that is the cross entropy
if the input can be represented as bit vector or bit possibilities. The cross entropy
error is shown in Equation 4.1:

L(x ,bx)L(x ,bx)L(x ,bx) = �
dX

i=1

[xxx i logbxxx i + (1� xxx i)log(1� bxxx i)] (4.1)

The hidden layer code h can capture the information of input examples along the
main dimensions of variant coordinates via minimizing the reconstruction error. It
is similar to the principle component analysis (PCA) which project data on the
main component that captures the main information of the data. hhh can be viewed
as a compression of input data with some lost, which hopefully not contain much
information about the data. It is optimized to compress well the training data and
have a small reconstruction error for the test data, but not for the data randomly
chosen from input space.

4.1.2 Denoising Autoencoders

In order to prevent the Autoencoder from just learning the identity of the input
and make the learnt representation more robust, it is better to reconstruct a cor-

28

rupted version of the input. The Autoencoder with a corrupted version of input is
called a Denoising Autoencoder. Its structure is shown in Figure 4.2. This method
was proposed in [78], and it showed an advantage of corrupting the input by com-
parative experiments. Hence we will use denoising autoencoders instead of classic
autoencoders in this thesis.

Raw input xxxCorrupted input x̃x̃̃x

Hidden code L(x ,bxbxbx)L(x ,bxbxbx)L(x ,bxbxbx)

Reconstruction bxbxbx

Figure 4.2: A graphical figure of Denoising Autoencoder. An input xxx is corrupted to
x̃x̃̃x . After that the autoencoder maps it to the hidden representation hhh and attempts
to reconstruct xxx .

A Denoising Autoencoder can be seen as a stochastic version with adding a stochas-
tic corruption process to Autoencoder. For the raw inputs xxx , some of them will be
randomly set to 0 as corrupted inputs x̃x̃̃x . Next the corrupted input x̃x̃̃x will be en-
coded to the hidden code and then reconstructed to the ouput. But now bxbxbx is a
deterministic function of x̃x̃̃x rather than xxx . As Autoencoder, the reconstruction is
considered and calculated between bxbxbx and xxx noted as L(x ,bx)L(x ,bx)L(x ,bx). The parameters of the
model are initialized randomly and then optimized by stochastic gradient descent
algorithms. The di↵erence is that the input of the encoding process is a corrupted
version x̃x̃̃x , hence it forces a much more clever mapping than just the identity, which
can denoise and extract useful features in a noise condition.

The training algorithm of a denoising autoencoder is summarized in Algorithm 2.

29

Algorithm 2 Denoising Autoencoder Training

1: procedure DA Training(e,b,xxx ,c,l,✓✓✓)
2: xxx = [x1, x2, ...xn] 2 Rn⇤m is the input matrix, in which xi 2 [0, 1]

m (1 i m)
is a single input data

3: e is the amount of epochs to be iterated
4: b is the amount of batches
5: l is the learning rate
6: c is the corruption level
7: ✓✓✓ = {W ,b, bhb, bhb, bh} where W 2 Rn⇤d

, b 2 Rd
, bh 2 Rd , ✓✓✓ is the parameters of a

DA
8: for 0 to e do
9: for 0 to b do
10: x̃x̃̃x = getCorruptedInput(xxx ,c), in which c is the corrupted level
11: hhhhhhhhh = sigmoid(x̃x̃̃x ⇤W + bbb)
12: bxbxbx = sigmoid(hhhhhhhhh ⇤W T

+ bhbhbh)
13: L(x ,bx)L(x ,bx)L(x ,bx) = �

Pd
i=1 [xxx i logbxxx i + (1� xxx i)log(1� bxxx i)]

14: cost = mean(L(x ,bx)L(x ,bx)L(x ,bx))
15: ggg = compute the gradients of the cost with respect to ✓✓✓
16: for ✓i , gi in (✓✓✓,ggg) do
17: ✓i = ✓i � l ⇤ gi
18: end for
19: end for
20: end for
21: end procedure

4.1.3 Stacked Autoencoder

Unsupervised pre-training

A Stacked Autoencoder is a multi-layer neural network which consists of Autoen-
coders in each layer. Each layer’s input is from previous layer’s output. The greedy
layer wise pre-training is an unsupervised approach that trains only one layer each
time. Every layer is trained as a denoising autoencoder via minimising the cross
entropy in reconstruction. Once the first i th layer has been trained, it can train
the (i + 1)

th layer by using the previous layer’s hidden representation as input. An
example is shown below. Figure 4.3 shows the first step of a stacked autoencoder. It
trains an autoencoder on raw input xxx to learn h1h1h1 by minimizing the reconstruction
error L(x ,bx)L(x ,bx)L(x ,bx).

xxx bxxx

h1h1h1

W1 W 0
1

Figure 4.3: Step 1 in Stacked Autoencoders

30

Next step shown in Figure 4.4. The hidden representation h1h1h1 would be as ”raw in-
put” to train another autoencoder by minimizing the reconstruction error L(h1, bh1)L(h1, bh1)L(h1, bh1).
Note that the error is calculated between previous latent feature representation h1h1h1
and the output bh1bh1bh1. Parameters W2 and W 0

2 will be optimized by the gradient de-
scent algorithm. The new hidden representation h2 will be the ’raw input’ of the
next layer.

xxx bxxx

h1h1h1

h2h2h2

bh1h1h1

W1 W 0
1

W2 W 0
2

Figure 4.4: Step 2 in Stacked Autoencoders

The pre-training algorithm of stacked denoising autoencoder is summarized in al-
gorithm 3.

Algorithm 3 Unsupervised preTrain SDA

1: procedure preTraining(e,b,XXX ,c,l,✓✓✓)
2: X = [x1, x2, ...xn]X = [x1, x2, ...xn]X = [x1, x2, ...xn] 2 Rn⇤m is the input matrix, in which xi 2 [0, 1]

m (1 i
m) is a single input data

3: l is the learning rate
4: hhh = [h1, h2, ..., hz] 2 Z l , where hi is the number of hidden units in layer i and

l is the number of hidden layers.
5: ccc = [c1, c2, ..., cz] 2 (0, 1)

z , in which ci is the corruption level of the input of
the hidden layer i.

6: ⇥

⇥

⇥ = [✓1✓1✓1,✓2✓2✓2, ...,✓z✓z✓z], where ✓i✓i✓i = {Wi ,bi , bhibi , bhibi , bhi}
7: O = [O1,O2, ...,Ol]O = [O1,O2, ...,Ol]O = [O1,O2, ...,Ol] is the output of each hidden layer, where

Oi = [oi ,1, oi ,2, ..., oi ,n]Oi = [oi ,1, oi ,2, ..., oi ,n]Oi = [oi ,1, oi ,2, ..., oi ,n] 2 Rn⇤hi
(0 < i < l)

8: ✓1✓1✓1 = DA Training(e,b,xxx ,c,l,✓1✓1✓1)
9: for i from 1 to n do
10: o1,io1,io1,i = sigma(xiW1xiW1xiW1 + bibibi)
11: end for
12: for j from 2 to l do
13: ✓j✓j✓j = DA Training(e,b,Oj�1Oj�1Oj�1,c,l,✓j✓j✓j)
14: for i from 0 to n do
15: ojiojioji = �(oj�1,iWj + bjoj�1,iWj + bjoj�1,iWj + bj)
16: end for
17: end for
18: end procedure

31

Supervised fine-tuning

At last once all the layers has been pre-trained, the next step called fine-tuning
is performed. A supervised predictor will be extended to the last layer, such as
support vector machine or a logistic regression layer. In this project, we chose a
logistic regression layer. After that the network will be trained. A sample graph
is shown in Figure 4.5. It can be seen that for each layer of the network, only the
encoding hidden representation hihihi (i 2 N) are considered. The fine-tuning step
will train the whole network by back-propagation like training an Artificial Neural
Network. A stacked denoising autoencoder is just replace each layer’s autoencoder
with denoising autoencoder whilst keeping other things the same.

xxx bxxx

h1h1h1

h2h2h2

bh1h1h1

byyy

bh2h2h2

W1 W 0
1

W2 W 0
2

W 0
3 W 0

3

Figure 4.5: A complete architecture of stacked autoencoder

The supervised fine-tuning algorithm of stacked denoising auto-encoder is summa-
rized in Algorithm 4.

Algorithm 4 Supervised FineTuning SDA

1: procedure fineTuning(e,b,XXX ,c,l,✓✓✓)
2: X = [x1, x2, ...xn]X = [x1, x2, ...xn]X = [x1, x2, ...xn] 2 Rn⇤m is the input matrix, in which xi 2 [0, 1]

m (1 i
m) is a single input data

3: l is the learning rate
4: hhh = [h1, h2, ..., hz] 2 Z l , where hi is the number of hidden units in layer i and

l is the number of hidden layers.
5: ccc = [c1, c2, ..., cz] 2 (0, 1)

z , in which ci is the corruption level of the input of
the hidden layer i.

6: ⇥

⇥

⇥ = [✓1✓1✓1,✓2✓2✓2, ...,✓z✓z✓z], where ✓i✓i✓i = {Wi , bi , bhiWi , bi , bhiWi , bi , bhi}
7: O = [O1,O2, ...,Ol]O = [O1,O2, ...,Ol]O = [O1,O2, ...,Ol] is the output of each hidden layer, where

Oi = [oi ,1, oi ,2, ..., oi ,n]Oi = [oi ,1, oi ,2, ..., oi ,n]Oi = [oi ,1, oi ,2, ..., oi ,n] 2 Rn⇤hi
(0 < i < l)

8: logLayer = LogisticRegression
9: for epoch from 0 to e do

32

10: cost =

1
|D|L(✓ = {W , b},D) =

1
|D|
P|D|

i=0 log(P(Y = y (i)|x (i),W , b))`(✓ =

{W , b},D)

11: g = compute the gradient of costwith respect to ✓✓✓
12: for ✓i , gi in (✓✓✓,ggg) do
13: ✓i = ✓i � l ⇤ gi
14: end for
15: validationLoss= 1

n

Pn
i=i I (ŷi , yi)

16: if validationLoss < bestValidationLoss then
17: bestEpoch = epoch
18: bestPara = ✓✓✓
19: bestValidationLoss = validationLoss
20: end if
21: end for
22: return bestEpoch, bestPara
23: end procedure

4.2 Deep Belief Networks

One of the most popular unsupervised learning models is Restricted Boltzmann
Machines (RBM), which has been used for many types of data including images
[29], speech representation [56] and moving ratings [68]. It was another success in
building a generative model for bags of words that represents documents [31], which
indicate its potential capacity to build a model to predict the stock with financial
documents. The most widely usage of RBM is composed to build a Deep Belief
Network (DBN). The learning process of RBM is usually contrastive divergence.
Experiences are needed to decide the setting of numerical parameters, such the
batch size, the learning rate, the momentum, the number of epochs to iterate, the
layers of hidden units, and how many units in each hidden layer, the update methods
being deterministically or stochastically and the initialization of weights and bias.
It also needs to be considered the way to monitor the learning process and stop
criteria. This section will introduce the key components and training method of
our DBN model, based on the guide in [27].

4.2.1 Restricted Boltzmann Machines

Energy based model assigns an energy value to each possible configuration of units
by an energy function. The function will be trained to make it has some properties
such as making the energy of desirable configuration has energy as low as possible.
Boltzmann Machines (BMs) are a type of energy model in a form of Markov Ran-
dom Field whose energy function is linear for its parameters. In order to make it
su�ciently powerful to express complex functions, some invisible variables as hid-
den units are added. The Restricted Boltzmann Machines is a restricted version
of BMs, which constrain the BMs without the connections between di↵erent vision

33

units or connections between di↵erent hidden units. A example graph is shown in
Figure 4.6

h1 h2 h3

v1 v2 v3 v4

Figure 4.6: A Restricted Boltzmann Machine

The energy function is shown below:

E (v , hv , hv , h) = �
X

j2hidden

ajhj �
X

i2visible

bivi �
X

i ,j

hjviwij (4.2)

where hj vi represent the value of the hidden and visible units. aj is the o↵set of the
visible layer and bi is the o↵sets of the hidden layer. wij is the weights connecting
the hidden and visible units. The energy model defines the probability distribution
via the energy function:

p(v , hv , hv , h) =
1

Z
e�E(v ,hv ,hv ,h) (4.3)

where Z called partition function is a sum of all possible combinations of visible
and hidden vectors:

Z =

X

v ,hv ,hv ,h

e�E(v ,hv ,hv ,h) (4.4)

The probability of a given vector can be calculated by summing all hidden units:

p(vvv) =
1

Z

X

hhh

e�E(v ,hv ,hv ,h) (4.5)

According to the free energy function of Energy-Based Models G (vvv) = � log

P
hhh e

�E(v ,hv ,hv ,h),
we can get the free energy of RBM model:

G (vvv) = �bvbvbv �
X

i

log

X

hi

ehi (ai+Wivvv) (4.6)

The probability assigned to a training input can be increased via adjusting W , aaa
and bbb to make the energy of the training examples lower and other examples in
the input space higher. Both of the visible units vvv and hidden units are condi-
tionally independent of one anther, by reason of its specific structure. It can be
mathematically expressed as:

P(hi = 1|vvv) = sigmoid(Wivvv + ai) (4.7)

P(vj = 1|hhh) = sigmoid(Wjhhh + bj) (4.8)

34

Then the free energy of a RBM can be simplified to the following equation:

G (vvv) = �bvbvbv �
X

i

log 1 + eai+Wivvv (4.9)

Algorithm 5 RBM training

1: procedure trainRBM(e,b,xxx ,c,l,✓✓✓,k)
2: xxx = [x1, x2, ...xn] 2 Rn⇤m is the input matrix, in which xi 2 [0, 1]

m (1 i m)
is a single input data

3: e is the amount of epochs to be iterated
4: b is the amount of batches
5: l is the learning rate
6: k is the Gibbs steps to do
7: for 1 to e do
8: hhh = SampleHGivenV(xxx)
9: for Scan 1 to k do
10: vvv = SampleVGivenH(hhh)
11: hhh = SampleHGivenV(vvv)
12: store vvv , hhh in chain of Gibbs sampling
13: end for
14: endChainendChainendChain = get the previous vvv in chain of Gibbs sampling
15: cost = Mean(freeEnergy(xxx) - freeEnergy(endChainendChainendChain))
16: cost = cost+ the norm penalty of input
17: g = compute the gradient of cost with respect to ✓✓✓
18: for ✓i , gi in (✓✓✓,ggg) do
19: ✓i = ✓i � l ⇤ gi
20: end for
21: end for
22: end procedure
23:

24: procedure SampleHGivenV(vvv)
25: h1h1h1 = sigmoid(WvWvWv + aaa) (Equation 4.7)
26: sh1sh1sh1 = get a sample of hidden units given h1h1h1
27: return sh1sh1sh1
28: end procedure
29:

30: procedure SampleVGivenH(hhh)
31: v1v1v1 = sigmoid(WhWhWh + bbb) (Equation 4.8)
32: sv1sv1sv1 = get a sample of hidden units given v1v1v1
33: return sv1sv1sv1
34: end procedure
35:

36: procedure freeEnergy(sv1sv1sv1)
37: return �bvbvbv �

P
i log 1 + eai+Wi⇤sv1Wi⇤sv1Wi⇤sv1

38: end procedure

35

4.2.2 Deep Belief Networks

Deep Belief Networks (DBNs) [30] is a greedy layer-wise form network consists of
stacked RBMs, and its hierachical architecture is shown in Figure 4.7. It is also a
graphical model which learns a multi-layer representation of the training examples.

vvv

h1h1h1

h2h2h2

h3h3h3

yyy

RBM

Figure 4.7: An complete architecture of stacked autoencoder

As a stacking autoencoder, an DBN is stacked with RBMs by greedy layer wise
unsupervised feature learning[30, 7], and each layer is a building block trained by
RBM. After the hidden layer hihihi is trained, in next train step it will be as the visible
layer, and the successive layer hi+1 will be the hidden layer. The joint distribution
between input xxx and all hidden layers hihihi(i 2 [1, n]) can be expressed in Equation 4.10
below. n is the number of RBM layrs. x is the first layer so it can also be viewed as
h0h0h0. P(hn�1

, hnhn�1
, hnhn�1
, hn) is the joint probability between visible layer hn�1hn�1hn�1 and hidden layer

hnhnhn which is on the top of the DBN. P(hi�1|hihi�1|hihi�1|hi) is the distribution for the visible layer
hi�1hi�1hi�1 conditioned on layer hihihi at level i .

P(x , h1, .., hnx , h1, .., hnx , h1, .., hn) = P(hn�1
, hnhn�1
, hnhn�1
, hn)

n�1Y

i=1

P(hi�1|hihi�1|hihi�1|hi)
!

(4.10)

The training process of DBN is shown in Algorithm 6

36

Algorithm 6 DBN Training

1: procedure DBNTraining
2: Set the first layer x = h0x = h0x = h0 as visible layer prepared to train with an RBM.
3: Use the layer to obtain a hidden representation by training an RBM, which

can filtered by mean activation p(h1 = 1|h0h1 = 1|h0h1 = 1|h0).
4: Train next layer as an RBM with the input from hidden units of previous

layer’s RBM.
5: Iterate step 2 and 3 for a suitable times
6: Fine-tuning by supervised gradient descent.
7: end procedure

For the fine-tuning part in this project, a logistic regression classifier was extended
to the last layer. A training label will be assigned to each input and the parameters
of the DBN will be tuned by gradient descent algorithm based on the negative log
likelihood cost function.

4.3 The Recurrent Neural Networks-Restricted
Boltzmann Machine

The key events occurring within a company can have a profound impact on the
corresponding prices of stocks. In addition, the e↵ects on the price may be sequential
and dependent. Sequential modeling is an active research area of machine learning,
such as speech, words in text, music and so on. The temporal events recorded on
financial reports also have the sequential feature. Recurrent neural networks (RNN)
[64] have an internal memory which can store the historical sequence of training
data. This property can make them suitable in modeling long-term dependencies,
but the challenge is that it is not easy to train them with e�ciently by gradient
based optimization [9]. However, each word vector of a financial report is high-
dimensional. In this case, predicting the conditional distribution of next given
data of previous times is more suitable. The di�culty can be relieved by the energy
based model by expressing the negative log-likelihood of a given configuration with a
energy function. The RNN-RBM [14] is an energy based model which is an extension
of the RTRBM [74]. The model can have a good freedom to describe the density
of temporal frequency involved. It can be used to deal with the temporal e↵ects
of important financial events in a long-term period of time, which may have some
degree of impacts on the stock prices. We extend the RNN-RBM by combining an
DBN with two reasons. One is that component of an DBN is RBM, which makes it
easy to combine DBN and RNN-RBM together. Moreover the multilayer structure
can be consider to increase the power of complex function expression. This idea
was introduced in [83]. In the following sections, we first had an overview of the
RTRBM and then introduce the RNN-RBM. After that the RNN-RBM combined
with DBN was presented.

37

4.3.1 The RTRBM

The RTRBM [74] is an abbreviation of the recurrent temporal restricted boltzmann
machine, which is a sequence of RBMs whose parameters at , bt ,W tat , bt ,W tat , bt ,W t are conditional
on the sequence history at time t. The simple structure of the RTRBM is shown in
Figure 4.8. The RTRBM can be defined as the following equation:

p({vvv t
,hhht}) =

t=1Y

T

P(vvv t
,hhht |{vvv k

,

ˆhhh
k
|k < t}) (4.11)

where each P(vvv t
,hhht |{vvv k

,

ˆhhh
k
|k < t}) is a joint probability (Equation 4.2) of the RBM

at time t. ˆhˆhˆhk is the binary mean-field value of hhhk while sampling and inference,
which can be transmitted to its following RBM. This property make it have a low
calculation cost to inference h0h0h0 Each RBM depends on previous steps, it can be
considered only the biases depend on h0(t�1) :

aaat = aaa +W 0h0t�1 (4.12)

bbbt = bbb +W 00h0t�1 (4.13)

The following definition of h0h0h0t can be obtained by combining equations 4.7 and 4.12.

h0h0h0(t) = �(Wvvv (t)
+ a(t)) = �(Wvvv (t)

+W 0 ⇤ h0h0h0(t�1)
+ aaa) (4.14)

h0h0h0 h1h1h1

a1
h2h2h2

a2

hththt

at

v 1v 1v 1

b1

v 2v 2v 2

b2

v tv tv t

bt

. . .

. . .

W
0

W
0

W
0

W
00

W
00

W
00

WWW

Figure 4.8: The graphical structures of the RTRBM

4.3.2 The RNN-RBM

As mentioned before, there is a restriction imposed on the RTRBM, which is that
a hidden layer must describe the conditional distributions and a↵ect the following
hidden layer. However, not all the events happened would have a long-term e↵ects.
In our case, some financial reports just includes a very short summary of old infor-
mation, which may not have some long-term e↵ect on the stock movement. If we
use the RTRBM to predict the stocks, every article would a↵ect the following days.
In order to lift this constraint, another model call RNN-RBM were proposed in [14]
with combining a full RNN as the structure shown in Figure 4.9. The RNN-RBM
is an abbreviation of Recurrent Neural Networks-Restricted Boltzmann Machine.
The joint probability is still as equation 4.11, but with h0h0h0 defined arbitrarily. The

38

parameters of each RBM are considered to be W , aaat and bbbt , which depend on the
output of a single layer RNN with hidden units h0t�1h0t�1h0t�1:

aaa(t) = aaa +W 0h0t�1 (4.15)

bbb(t) = bbb +W 00h0t�1 (4.16)

and the recurrent hidden units of the single-layer RNN can be obtained:

h0h0h0t = �(W2vvv
t
+W3 ⇤ h0h0h0t�1

+ ccc) (4.17)

h1h1h1

aaa1
h2h2h2

aaa2

hththt

aaat

v 1v 1v 1

bbb1

v 2v 2v 2

bbb2

v tv tv t

bbbt

h0h0h0 h02h02h02 h0th0th0th00h00h00

. . .

. . .

. . .

W
0

W
0

W
0

W
00

W
00

W
00

W3W3W3

WWW

W2W2W2

Figure 4.9: The graphical structures of the RNN-RBM

Nine parameters are given to the RNN-RBM. They are four parameters of RBM:
W , aaa, bbb, h0h0h00, and five parameters of RNN: W 0, W 00 W2, W3, ccc , which are used for
training of this model. The general training process can be separated into several
steps which are shown in Algorithm 7.

Algorithm 7 RNN-RBM Training

1: procedure RNN-RBMTraining
2: Use Equation 4.9 to propogate h0h0h0t at current time t.
3: Calculate parameters of the RBM depending on h0h0h0t by equation 4.15

and 4.16 , and then generate v tv tv t with Gibbs sampling.
4: Use the contrastive divergence (CD) to obtain the derivative with respect

to aaat , bbbt , and W.
5: Derive at the parameters of RNN by applying Back-propagation Through

Time (BPTT) algorithm [67].
6: Iterate previous steps
7: end procedure

Algorithm 8 describes the implementation of the RNN layer.

39

Algorithm 8 Build RNN-RBM

1: procedure BuildRNN-RBM(xxx ,v ,h,r)
2: xxx = [x1, x2, ...xT] 2 Rn⇤m is the input matrix, in which xi 2 [0, 1]

m (1 i
m) is a single input data

3: v is Integer, which represents the number of visible units.
4: h is Integer, which represents the number of hidden units of the conditional

RBMs.
5: r is Integer, which represents the number of hidden units of the RNN.
6: initialize W , aaa, bbb,W 0, W 00, h0h0h00 W2, W3, c
7: ✓ = [W ,aaa,bbb,W 0

,W 00
,W2,W3,ccc]

8: iterate call recurrence(v tv tv t ,h0t�1h0t�1h0t�1) given h0h0h00 v 0
= xv 0
= xv 0
= x for T times, to get all

aaat ,bbbt (0 < t < T)
9: iterate call recurrence(v tv tv t ,h0t�1h0t�1h0t�1) given h0h0h00 v 0v 0v 0

= None for T times, to do
hidden sequence generation

10:

11: end procedure
12: procedure recurrence(v tv tv t ,h0t�1h0t�1h0t�1)
13: aaat = aaa +W 0h0t�1

14: bbbt = bbb +W 00h0t�1

15: generate = v tv tv t
== None // that means if the input parameter v tv tv t is None,

generate will be true.
16: if generate then
17: trainRBM(zeros(v), W ,aaat ,bbbt , k = 25)
18: end if
19: h0h0h0t = �(W2vvv

t
+W3 ⇤ h0h0h0t�1

+ ccc)
20: if generate then
21: return [v tv tv t

,h0h0h0t]
22: else
23: return [h0h0h0t ,aaat ,bbbt]
24: end if
25: end procedure

4.3.3 Combination with DBN

RNN-RBM is combined with a DBN, in order to obtain a multilayer structure with
expressing complex function [83]. We expect that it is a deep structure model
which can depict time series temporal e↵ect. Both of their unit components are
RBMs, so it is easy to combine them. The layer setup are briefly presented in
Algorithm 9. RNN-RBN was used to substitute the first RBM which is visible layer
vvv and hidden layer h1h1h1 of DBN in Figure 4.7. Its training algorithm is similar to
DBN, which was separated to pre-training and fine-tuning. In the pre-training step,
the parameters are computed by pre-training algorithm of RBM and RNN-RBM
which have been introduced above. In the fine-tuning step, the parameters are
tuned by back-propagation.

40

Algorithm 9 RNNRBM-DBN Layer Setup

1: procedure LayerSetup(hiddenLayerSize)
2: hiddenLayerSize = [l1, l2, ..., ln] where n is the number of hidden layers, li , i 2

[0, 1] is the number of hidden units in the i � th hidden layer
3: xxx = [x1, x2, ...xT] 2 Rn⇤m is the input matrix, in which xi 2 [0, 1]

m (1 i
m) is a single input data

4: for i in [0, n] do
5: if i == 0 then
6: inputSize = T
7: layerInput = xxx
8: else
9: inputSize = hiddenLayerSize[i � 1]

10: layerInput = the output of the last element of sigmoidLayers
11: end if
12: if i == 0 then
13: rnnrbmLayer = create an RNNRM object given input parameters

inputSize as visible unit size, layerInput as as input matrix, hiddenLayerSize[i] as
the hidden layer size.

14: hiddenLayer = Create a hidden layer with input layerInput as in-
put matrix, rnnrbmLayer .WWW as parameter WWW , rnnrbmLayer .b(t)b(t)b(t) as parameter
bbb, sigmoid as activation function

15: else
16: hiddenLayer = Create a hidden layer with input layerInput as input

matrix and default randomized WWW and bbb, sigmoid as activation function
17: rbmLayer = create an RBM object given input parameters inputSize

as visible unit size, layerInput as as input matrix, hiddenLayerSize[i] as the hidden
layer size. hiddenLayer .WWW as parameter WWW , hiddenLayer .bbb as parameter bbb,

18: end if
19: Append hiddenLayer to sigmoidLayers
20: Append hiddenLayer .✓✓✓ to params
21: end for
22: logLayer = create a logistic regression with the output of the last layer of

sigmoidLayers as input matrix, the last element of hiddenLayerSize as hidden
layer size

23: Append logLayer .✓✓✓ to params
24: end procedure

41

Chapter 5

Implementation

In the section, we will present key implementation details of this project. Note that
the there are too many implementation details to fully introduce them. Hence we
only talk about some of them as examples. First, an overview of implementation is
provided.

5.1 Implementation Overview

The implementation consists of several processes which are data processing, model
building, model operation, model evaluation and model optimization. The pipeline
flow chart is shown in Figure 5.1. The textual financial reports first are processed
with some natural language processing and information retrieval techniques which
have been introduced in chapter 2. For the price data, it need to be done with a
price to label mapping with a mechanism introduced in section 5.3. Some financial
indicators were computed to obtain a more complete analysis. For each stock, five
machine learning models are used to train the models for comparisons. The five
models are SDA, DBN, modified RNN-RBN. SVM and RF. The first three are deep
learning models, and the last two state-of-art and classic machine learning models.
By optimizing the parameters, an relatively good model can be built. Then test
data can be used to test the e�ciency of the models. In the model operation step,
some prediction scores can be obtained. The scores can map to the corresponding
labels. At the phase of model evaluation, we can compare the models we build, and
do some analysis. By the the understanding of the models, we can return to the
process of data processing, to change the methodology we used or optimized some
parameters such as how many bag-of-words need to be selected and some other
coe�cients.

42

Figure 5.1: Pipeline of this project

5.2 Programming Language and External Library
Used

The chosen main programming language is python, because it has some libraries
suitable for machine learning programming. In addition, it is a script language.
This feature makes it suitable to do scientific programming and experiments. Some
libraries we used are not included in the python. So they are external libraries
which are need to be installed. The are listed below:

• NLTK is a natural language process library, whose Wordnet Word Lemmatizer
was used as a library to get the lemma of each words.

• sklearn.svm and sklearn.ensemble provide the library functions for using Sup-
port Vector Machine and Random Forest respectively, which can be directly
used as baseline methods to compare with deep learning models.

• theano [10] is a python library which can allow the user e�ciently define
mathematical expressions involving multi-dimensional arrays on GPU, and
prototype new machine learning models without unnecessary implementation
overhead.

• matplotlib library is a plot library, which was used to draw financial indicators.

• NumPy is a powerful library for the fundamental scientific programming

43

• progressbar is a visualization library which can show a text progress bar to
help the user to know the progress of a long running program. In this project,
lots of individual program running in preprocessing steps are very long, so we
used this library to monitor the progress of running.

5.3 Bag-of-word Selection

In section 3.2 and 3.3, the text feature selection and Chi-square text has been
introduced. In this, we will talk about some implementation settings of feature
selection process. In order to save computation time, for now, I fixed the number of
terms to 1000, whose Chi-square score are the top 1000 highest. The stock change
for each report are calculated by the di↵erence between before and after the report
is released. For example, if the report is released before 15:00, the price change
will the di↵erence between the day’s opening price and closing price. Otherwise,
the price change will be the di↵erence between next day’s opening price and the
day’s closing price. Each unique unigram was given three attributes, which are ’up’,
’down’ and ’stay’. ’up’, ’down’ and ’stay’ means the di↵erence between closing price
and opening price on that day are greater than 1%, less than �1%, or between 1%

and �1% respectively. Then I gave a label to each document by computing the
stock price change on the corresponding date. Table 5.1 shows the information
needed to calculate the Chi-square score, where ua, da or sa denote the number of
days when the unigram occur in the 8-K reports, and the report were classified to
Up, Down or Stay. Similary un, dn or sn denote the same thing but the unigram
does not occur in the report. For each brand and each unigram, ua, da and sa are
needed to be computed and then which are stored in the attributes ’up’, ’down’ and
’stay’. Other items in the table can be obtained by computing with ua, da and sa.

Table 5.1: Information needed to calculate Chi-square

Up Down Stay Sum
Appear ua da sa A
Not appear un dn sn N
Sum U D S T

Then for each brand and each term �2
up and �2

down were calculated as in Eq 5.1 and
Eq 5.2. Then the greater one of �2

up and �2
down can be the utility score as presented

in the Algorithm 1.

�2
up =

(|ua · (dn + sn)� ud · (da + sa)|� A
2)

2 · A
U · D · A · N (5.1)

�2
down =

(|da · (un + sn)� dd · (ua + sa)|� A
2)

2 · A
U · D · A · N (5.2)

Now we have obtained the feature list with the format of bagofwords. Then for
each document we need to check whether the unigram in the text feature list exists,
if it exists, the value of the corresponding term will become 1, while the default

44

values for every text feature are zero. Then the text feature will be appended into
the data structure shown in Figure 5.2. Note that every day may have not only one
article, so the values corresponding to each day is a text feature matrix.

AAPL XOM GE CVX MSFT · · ·

2002 2003 2004 2005 20062007

· · ·

date(2002, 1, 1) date(2002, 1, 2) date(2002, 1, 3) · · ·

textFeatureList1
textFeatureList2

...

Figure 5.2: Data structure of text features

5.4 Same Day Textual Data Compression

The reasons and theory to compress the same day textual data have been introduced
in section 3.4. This section, we will present several implementation details. For
sparse vectors, we should train an unsupervised feature learning model to learn a
more useful feature representation. In this project, both Sparse Autoencoders and
RBM were tested and experimented. The model has been trained by unsupervised
feature learning with training data. After that, parameters of the model were saved
to a file. In the next step, we load the saved model and transform the input data to
the hidden representation by the parameters of the model, e.g. h = sigmoid(Wx+b).
Note that for each day when the 8-k report published, there may be not only one
report. In other words, there were possibly some reports published. However for
each day, the label is only which is moving up or down of the stock price. Hence
we have to unify the reports together from the same day. For each day, we may
have a matrix which contains a set of hidden vectors h(1) to h(n). Then we are able
to choose to use either max-pool or average-pooling to process the matrix as a new
vector which can be used as an input of the next phase.

45

Figure 5.3: The process of same day textual data compression

5.5 Historical Price Data Processing

With the implemented functions presented in section 3.6, a program was imple-
mented to draw a diagram including above financial indicators with the python
library matplotlib. An example is shown in 5.4.

Figure 5.4: The figure contains the stock price information of Apple company from
30 May 2014 to 30 May 2015 including SMA, EMA, MACS and RS, drawn with
matplotlib library

46

MACD were calculated for each day. The price information is stored in the data
structure like Figure 5.5. Each brand is stored in a dictionary which the corre-
sponding brand codes of the companies are as the keys. The value corresponds to
each key is a dictionary whose keys are the years from 2002 to 2012. For each year,
the corresponding value is another dictionary whose keys are the date objects of
the year from 1

st , Jan to 31

th Dec. At last, each date object corresponds to an-
other dictionary which contains the price information about opening price, closing
price, trading volume, high price, low price, adjusted price, MACD and the next
day’s MACD. For example, the AIG stock in the figure contains a dictionary whose
keys are 2002, 2003, 2004 and so on. The value corresponding to 2002 is another
dictionary whose keys are date(2002, 1, 1), date(2002, 1, 8), date(2002, 1, 10). They
are the dates AIG published an 8-K report. Each value corresponding to the dates,
for example date(2002, 1, 1), is another dictionary whose keys are openprice, high,
low , and other attributes shown in the figure. The values are the float numbers
corresponding to the keys. The whole data structure is stored as an object in a file
by python cPickle library.

AIG C EXC PNC TYC · · ·

2002 2003 2004 2005 20062007

· · ·

date(2002, 1, 1) date(2002, 1, 8) date(2002, 1, 10) · · ·

openprice high low closeprice volume adjClose MACD nextMACD

Figure 5.5: Data structure of stock price information

5.6 Model Building

The three deep learning models are implemented based on the algorithms which
has been listed in Chapter 4 with python. For the model of SVM and RF, we take
advantage of the library sklearn.svm and sklearn2.ensemble. The following section
introduces the process of training steps.

5.6.1 Pre-training process

Each deep learning model needs two steps, one is pre-training and another is fine-
tuning. The pre-training step is unsupervised layer-wise training, which aims to
minimize the cost of each layer which was introduced in the previous chapter. Fig-
ure 5.6 shows an illustration of the pre-training process for di↵erent learning rate
↵ as an example. This line chart shows the process of the pre-training step on the
Citigroup Inc. (C). As the epochs increases, the cross entropy losses were going

47

down. Di↵erent learning rates lead to a di↵erent results. For this example, the
lowest result ↵ = 0.08 lead to a lower cost than ↵ = 0.001 after 200 epochs.

0 20 40 60 80 100 120 140 160 180 200

0

200

400

600

800

epochs

E
rr
or

↵ = 10

�3

↵ = 10

�2

↵ = 0.03

↵ = 0.08

Figure 5.6: Pre-training process on the data of company Citigroup Inc. (C)

5.6.2 Fine-tuning process

Fine-tuning is another important step to learn and tune the parameters by minimiz-
ing the cost by back-propagation. Fine-tuning is a process of supervised learning,
which was introduced in the previous chapter. Figure 5.7 shows an example of fine-
tuning process still on the data of Citigroup Inc. (C). The fine-tune learning rate
was set to 0.01, and batch size was set to 20. The brown line represents the training
error trends as the epochs increased. It can be seen that the trend of the training
error decreased as the epochs increased. The blue line represents the classification
error of the validation set. Its trend went down first and then went up, because
it would be overfitting if the training epochs are too large. The validation set was
used to prevent from overfitting in the training process. The red line is the trend
of the test set, which can not provide any information in the training process, just
to test the performance of the trained model. The vertical dot line is the epoch
the model make the validation error smallest. The model would finally choose the
parameters at that epoch.

48

0 20 40 60 80 100 120 140 160

0.3

0.35

0.4

0.45

epochs

L
H
(
x
,
z
)
C
ro
ss

E
nt
ro
py

C
os
t

Validation set Testing set Training Set

Figure 5.7: Fine-tuning process on the data of company Citigroup Inc. (C)

This chapter introduced some implementation of this project. In next chapter, we
will discuss the experiments results and the analysis and evaluation of our models.

49

Chapter 6

Experiment Results and Analysis

This chapter describes the metrics used to evaluate the performance of each model
in section 6.1. Individual results and analysis of each deep learning model are
introduced in section 6.2. In section 6.3, three deep learning models and two other
classic machine learning models SVM and RF are compared and evaluated together.

6.1 Evaluation Metrics

In order to evaluate the classification results on di↵erent learning algorithms, we
need some measures and standards to judge the accuracy of the results. In this
section, we will discuss several simple evaluation approaches to help us choose the
best classification method.

6.1.1 The Confusion Matrix

The Confusion matrix [73] can be a useful validation tool to show the linear result
of a classifier on a given input . Each row of the matrix represents the genuine
class the input data belongs to and each column represents the output returned
by the predictor. A benefit of the metric is that it can clearly show the confusing
classification between two classes by a classifier. For instance, the Table 6.1 shows
the example of the confusion matrix of a binary classification between class A and
class B. Assume that Class A is the class we want to predict, which would be called
positive, other predicted classes are called negative. There are 10 actual class A
examples, and six of them are predicted correctly, which can be called true positives
(TP). Four of them are predicted as class B, which can be called false negatives
(FN). Three of seven actual class B samples are classified into class A called False
Positive (FP) . Four of them correctly classified are called true negatives (TN). In
addition the diagonal can show the accurate classifications.

50

Table 6.1: An example of Confusion Matrix

Class A Class B

Class A 6 4
Class B 3 4

6.1.2 Recall and Precision Rates

Consider a training problem on a binary classification as described above, there are
only positive and negative examples with a binary classifier. True Positive (TP) /
False Negative (FN) means the examples that are positive assigned to positive (true
classification) / negative (false classification). Similarly, True Negative (TN) / False
Positive (FP) are the positive examples assigned to negative (true classification) /
positive (false classification). In this case, the most simple and obvious way to
measure the performance is calculating the correction prediction rate which are
the sum of TP and TN divided by the sum of FP and FN, whereas sometimes it
may be a misleading measure when comparing which classifier is better. As the
tables shown below in Table 6.2, classifier B is obviously better than classifier A.
However the performance measure method has a problem for Table 6.3. Although
the recognition of classifier B is much better than A, it may not be able to recognise
positive data due to the mis-classification of all the actual positives, hence we cannot
say that B is better than A. At that time some other measures can be introduced
to solve that problem.

Table 6.2: Classification scenario 1

Classifier TP TN FP FN Error Rate

A 50 50 50 50 50%

B 74 74 26 26 26%

Table 6.3: Classification scenario 2

Classifier TP TN FP FN Error Rate

A 50 150 150 50 50%

B 0 300 0 100 25%

Recall and precision [62] are methods to measure the quality of the information
retrieval process. Recall describes the completeness of the process by calculating
the number of retrieved positive data divided by the number of the total positive
data including the ones not retrieved. Precision describes that the accuracy of the
retrieval via calculating the number of the correctly retrieved positive data divided
by the number of all the correctly retrieved data including the correctly retrieved
negative data. They can be used to measure the performance of the classifier. The
formally mathematical expression of the calculation of precision and recall is shown

51

in Equation 6.1 and Equation 6.2.

precision =

TP

TP + FP
(6.1)

recall =
TP

TP + FN
(6.2)

6.1.3 F↵-measure

Although the recall and precision can be individually used, F↵is a combination of
these two values to measure the quality of the classifier based the which value the
user are more interested in. The F↵ formula is shown below in Equation 6.3.For our
project, we use F1 measures which means ↵ is set to one shown in Equation 6.4.

F↵ = (1 + ↵)
recall ⇤ precision

↵ ⇤ precision + recall
(6.3)

F1 = 2

recall ⇤ precision
precision + recall

(6.4)

6.1.4 Classification Performance

In our project, we need to predict the up-trend or down-trend in our models. Due
to di↵erent aims, the retrieved positive data may refer to up-trend data, or down-
trend data. If the positive data refer to the up-trend data, we defined a series of
metrics called UP, UR and upF1 to represent the precision, recall and F1 of the
up-trend prediction. They can be mathematically expressed as:

• Up-trend Precision Rate:
The percentage of accurately predicted uptrend data (out of all uptrend data
predicted by the model):

UP =

Number of correctly predicted uptrend data

Number of predicted uptrend data
(6.5)

This indicator reflects the confidence of the prediction of uptrend data.

• Up-trend Recall Rate:
The percentage of up-trend data captured by the model (out of all uptrend
labelled data)

UR =

Number of correctly predicted uptrend data

Number of data with true uptrend labels
(6.6)

UR reflects the sensitivity of the model to the uptrend data.

52

• Up-trend F1 Score:
It considers both the uptrend precision and uptrend recall of the test to com-
pute the score.

upF1 = 2

UP ⇤ UR
UP + UR

(6.7)

upF1 reflects the overall confidence and sensitivity of uptrend prediction.

If the user focus on the prediction of the down-trend data, a series of metrics called
DP, DR and downF1 were defined as the prediction, recall and F1 of the down-
trend prediction. They can be computed with the following expression:

• Down-trend Precision Rate:
The percentage of accurately predicted downtrend data (out of all downtrend
data predicted by the model):

DP =

Number of correctly predicted downtrend data

Number of predicted downtrend data
(6.8)

This indicator reflects the confidence of the prediction of downtrend data.

• Down-trend Recall Rate:
The percentage of up-downtrend data captured by the model (out of all down-
trend labelled data)

DR =

Number of correctly predicted downtrend data

Number of data with true downtrend labels
(6.9)

DR reflects the sensitivity of the model to the downtrend data.

• Down-trend F1 Score:
It considers both the downtrend precision and downtrend recall of the test to
compute the score.

downF1 = 2

DP ⇤ DR
DP + DR

(6.10)

downF1 reflects the overall confidence and sensitivity of downtrend prediction.

6.1.5 Prediction Accuracy

Another metric was used to measure the performance of the models is the percent-
age of correctly labeled vector with respect to the whole testing set, we call that
prediction accuracy. It is the most commonly used performance evaluation indicator
for other similar projects. It can be computed using the following equations:

PA =

1

n

nX

i=i

I (ŷi , yi) ⇤ 100 (6.11)

I (x , y) =

⇢
1 if x = y
0 if x 6= y

(6.12)

where n is the size of the whole testing data. ˆy = [ŷ1, ŷ2, ..., ŷn] is the predicted label
of input data. y = [y1, y2, ..., yn] is the actual label set of the input data.

53

6.1.6 Stability of the Model

After defining the various evaluation metrics, the experiment results measured with
the metrics can be attained to evaluate the model in di↵erent aspects. After that
the stability of the model can be measured via calculating the standard deviation
of each performance indicators. It is a widely used method to test the stability in
statistics. The calculation formula can be expressed as Equation 6.14:

� =

vuut 1

N

NX

i=1

(xi � µ) (6.13)

µ =

1

N

NX

i=1

xi (6.14)

where x = [x1, x2, ..., xn] 2 Rn is a vector of performance of some stocks measured
with a particular indicator and N is the number of stocks tested in the experiments.

6.2 Experiment Results and Analysis of Individ-
ual Deep Learning Model

This section describes some experiment results measured with the metrics defined
in the previous section. The results will be analysed for the three deep learning
model respectively.

6.2.1 Experiment Setup

The data set we can obtain contains data of 500 companies. Because we train each
model on each company separately (not train them together as a whole model),
so lots of models are built and need to find the appropriate parameters. It is un-
realistic to train five model for each 500 companies. Moreover some of them do
not have enough size of data to be trained. Due to the huge time consuming cost
on the parameter optimization of the training process for each company, only 15
companies with largest size of data are selected as experiment data. They are Cit-
igroup Inc. (C), American International Group, Inc. (AIG), Williams Companies,
Inc. (WMB), Exelon Corporation (EXC), Tyco International Ltd. (TYC), Time
Warner Inc. (TWX), The PNC Financial Services Group, Inc. (PNC), PG&E Cor-
poration (PCG), CATCO REINSURANCE (CAT.L), Sprint Corporation (S) and
Equity Residential (EQR). At first, some experiment results are shown for individ-
ual learning models. The training set is the 8-K reports from 2002 to 2008. The
validation data set is the reports in 2009 and 2010. The test data set os the reports
in 2011 and 2012. The number of bag-of-word features are fixed to 1000, because
it is a relatively good value for a better results by experiments.

54

6.2.2 Experiments of Stacked Denoising Autoencoder

Each model’s parameters are optimized by the experiments of pre-training and
fine-tuning. After that performance indicator will be recorded. Figure 6.1 is a bar
chart which shows the prediction performance of some sample companies in terms
of various indicators. SAE compression is used with max-pooling to pre-process
the input data. The chart includes the results in a set of specific parameters of
five sample companies, which are Pacific Gas & Electric Co. Comm (PCG), Sprint
Corporation (S), Tyco International Ltd. (TYC), Time Warner Inc. (TWX) and
Altria Group Inc. (MO).

PA UP UR DP DR upF1 downF1
0

20

40

60

80

100

P
er
ce
nt
ag
e
(%

)

CAT S TYC WMB EQR

Figure 6.1: Overall prediction performance indicators of SDA on some example
stocks

The first bench of the bars shows the prediction accuracies of the sample compa-
nies, which are around 57%. It can be seen that the prediction accuracy is relatively
stable. Another interesting observation is that the recall rate of both up-trend and
down-trend data is not so stable as the prediction rate, especially for the downtrend
recall. For example, the company CAT and S has a very high downtrend recall, but
the other three companies have much lower downtrend recall rate. One of the reason
is that the not enough and uniform uptrend and down trend article data can make
the model sensitive to di↵erent category classifications. It can also be seen that the
model shows a average relatively high and stable performance on the downtrend
precision, which means that model have a good confidence on the downtrend stock
prediction.

The standard deviation of are given in Figure 6.2, which shows the stability of
the performance with respect to the various performance indicators. It is easy to
find that the value of prediction accuracy, uptrend precision and downtrend pre-
cision are relatively low which means that they are relatively stable. However the

55

standard deviation of uptrend recall and downtrend recall are relatively high, which
means that they are not stable enough. The stability of upF1 and downF1 is in a
middle level. According to the definition of the indicators in section 6.1.4 and 6.1.5,
the average prediction accuracy are in a stable level indicates the model of di↵erent
brands can have a similar performance. The performance of prediction confidences
on uptrend and downtrend data both are stable. However, the relatively high stan-
dard deviation of recalls indicates the sensitivity of prediction are very dependent
for di↵erent companies. The reason is possibly that di↵erent companies’ reports
have di↵erent selected words. Some of them are more sensitive to positives and
some are sensitive to negatives.

PA UP UR DP DR upF1 downF1
0

0.1

0.2

st
an

d
ar
d
d
ev
ia
ti
on

STDEV

Figure 6.2: Standard Deviation Bar Chart of various performance indicator

6.2.3 Experiments of Deep Belief Networks

In Figure 6.3, the five chosen stocks are still used as examples to illustrate an
overview and comparison of the prediction performances. An interesting observation
can be that downF1 are greater than or equal to upF1 for the given five sample stocks,
which indicates that the model has a better performance on downtrend prediction
than uptrend prediction. It can also be seen that although the precisions (UP,
DP) of them in the same level, their counterpart (UR, DR) have a big di↵erences
between the stocks. For example, stock CAT have a high DR, which mean it very
sensitive to downtrend stocks, while the model of TYC are not very sensitive to
downtrend stocks. The confidence of downtrend data is also high, because all the
DP of sample stock are near 60%.

56

PA UP UR DP DR upF1 downF1
0

20

40

60

80

100

P
er
ce
nt
ag
e
(%

)

CAT S TYC WMB EQR

Figure 6.3: Overall prediction performance indicators of DBN on some example
stocks

Figure 6.4 shows that the standard deviation of the experiments results of DBN on
five example stocks with six pre-defined performance indicators. From the chart, it
can be clearly seen that the performance results on prediction accuracy are most
stable. Compared to the recalls including uptrend recall and downtrend recall, the
precisions are more stable. According to the definition of precisions and recalls in
section 6.1.4, the confidence of the prediction are stable, but the sensitivity are
not stable enough. Besides the reason talked about in previous section, another
dominating reason may be the financial report data for each company are not large
enough. Some of them have much more uptrend data and some of them may
have much more downtrend data. Hence for those companies, the model may more
sensitive to one of uptrend or downtrend data. But a di↵erence between the stability
of SDA and DBN is that for DBN, the uptrend prediction are a bit more stable
than the downtrend prediction, no matter in sensitivity or confidence. It indicates
that the DBN can give a more stable performance for uptrend data for the given
experiment data set. In terms of the stability of F1 feature scores, they are in a
middle level. The uptrend predictions are more stable than the downtrend ones.

57

PA UP UR DP DR upF1 downF1
0

0.1

0.2

0.3

st
an

d
ar
d
d
ev
ia
ti
on

STDEV

Figure 6.4: Bar Chart of Standard Deviation results for Deep Belief Networks on
various performance indicators

6.2.4 Experiments of RNNRBM-DBN

Figure 6.5 shows the average performance indicators of the RNNRBM-DBN model
on the the same example stocks as the previous two sections. As similar to the
previous two models, precisions are more stable than recalls. Compared to previous
ones, prediction accuracies are higher, but the recalls are a bit more unstable. The
uptrend recall of WMB is higher than 80, but its downtrend recall is lower than 20.
It also reveals that, for some stock, the model may be much more sensitive to either
uptrend or downtrend prediction. This also indicates that the prediction with only
financial reports is not the best solution, it is better to combine the textual data
information with some other traditional financial features to improve prediction
accuracy in the future work.

58

PA UP UR DP DR upF1 downF1
0

20

40

60

80

100

P
er
ce
nt
ag
e
(%

)

CAT S TYC WMB EQR

Figure 6.5: Overall prediction performance indicators of RNNRBM-DBN on some
example stocks

Figure 6.6 shows the standard deviation of the experiments results of RNNRBM
on five example stocks, with six pre-defined performance indicators. The shape of
the diagram looks very similar to the DBN. So the stability of RNNRBM combined
with DBN are similar to those of DBN. One di↵erence is that the overall standard
deviations of RNNRBM are a bit smaller than those of DBN. This may indicate
slightly higher stability.

PA UP UR DP DR upF1 downF1
0

0.1

0.2

st
an

d
ar
d
d
ev
ia
ti
on

STDEV

Figure 6.6: Bar Chart of Standard Deviation results for RNNRBM-DBN on various
performance indicators

59

6.3 Empirical Results and Analysis of All Models

In this section, we will compare all the three deep learning models we built in
this project, together with two other powerful machine learning models Support
Vector Machine (SVM) and Random Forests (RF) as compared baseline methods.
The reason we chose them is that they are two of most widely used and powerful
machine learning models.

6.3.1 Evaluated with Price Prediction

Figure 6.7 shows that the average results across all the companies which are taken
in the experiments with various performance indicators. From the figure, it can
been seen that the RNN-RBM with adding DBN has a the most highest predic-
tion accuracy for the selected companies. The prediction accuracy of DBN and
RNNRBM-DBN are very similar, nearly in the same level and RNNRBM-DBN
are just a bit higher than DBN. Compared to support vector machine and ran-
dom forest, the average prediction accuracy was improved from 53.8% and 53.9%

to 59.4%. All the three deep learning models have better results than traditional
models. The prediction accuracy of SDA, DBN and RNNRBM are 58.3%, 59.0%

and 59.4% respectively, and there is not too much di↵erence between them. The
detailed prediction accuracy results on each stock are shown in Table 6.4. The
predictions including uptrend prediction and downtrend prediction of three deep
learning model are in the same level, but there are some obvious di↵erences be-
tween the recalls. Among them, SDA has the highest uptrend recall but lowest
downtrend recall. Instead, RNNRBM has the highest downtrend recall and lowest
uptrend recall. It indicates that SDA model are more sensitive to the uptrend pre-
diction, and RNNRBM are more sensitive to the downtrend prediction for the given
sample companies. RNNRBM having the lowest upF1 and highest downF1 means it
performs best in down trend stock prediction but not good enough in uptrend data.
SVM has the highest uptrend F1 score but the lowest downtrend F1 score among all
five models, which means it perform not good on the downtrend stock prediction.
For the random forest, all its performance indicators are in a stable level. Overall,
all the three deep learning models obtained a relatively good results compared to
the traditional machine learning models.

60

PA UP UR DP DR upF1 downF1

0

20

40

60

P
er
ce
nt
ag
e
(%

)

Average performance indicators of each model

SDA DBN RNNRBM-DBN SVM RF

Figure 6.7: This figure shows the average performance indicators of each model.
Each bar represents the average performance of the corresponding model across all
stocks. For example, the first bar means the average prediction accuracy on all
stocks of the models built with SDA.

Table 6.4: Test prediction accuracy rates for stock price prediction

Brand Code SDA DBN RNNRBM SVM RF

+DBN

C 58.2 59.7 58.2 53.7 53.7

AIG 62.7 64.4 58.3 45.7 57.6

TYC 48.7 58.5 51.2 51.2 51.2

WMB 57.4 59.5.3 66.0 57.4 70.2

TWX 64.7 64.7 64.7 64.7 58.8

EQR 64.7 62.5 62.5 53.1 52.9

PNC 61.7 61.7 61.7 61.7 53.1

PCG 54.6 57.8 64.7 65.6 51.5

CAT 55.7 55.7 55.7 44.2 50.0

S 54.8 54.8 61.2 54.8 51.6

T 57.8 52.3 54.6 52.3 47.7

EXC 54.4 55.9 54.4 52.9 39.7

JPM 58.5 60.6 58.4 51.5 50.9

MO 54.8 54.8 54.8 51.6 48.3

FCX 66.7 62.5 59.3 54.1 70.8

Average 58.3 59.0 59.4 53.9 53.8

61

Figure 6.8 shows the standard deviation of performance indicators of each model
on the results of all companies. The bar charts compared the stability of di↵erent
models on three main performance indicators. We know F1 is calculated by precision
and recall, which means it containes the overall information of precision and recall.
To make emphasize the stability of the overall performance, in the graph we just
look at the stability of prediction accuracy, upF1 and downF1. It is obvious to see
that the RF has the most stable performance, which is the smallest one for all three
indicators, although its performance is not better than the others. It can also be
seen that all five models shows a more stable performance on uptrend predictions
than downtrend predictions, especially for the SVM. The performance of three deep
learning models are nearly in the same stable levels.

PA upF1 downF1

0

10

20

30

P
er
ce
nt
ag
e
(%

)

Standard deviation of performance indicators of each model

SDA DBN RNNRBM-DBN SVM RF

Figure 6.8: This figure shows the standard deviation of performance indicators of
each model. Each bar represents the standard deviation of the specific performance
indicator of the corresponding model across all stocks. For example, the first bar
means the standard deviation of prediction accuracy on all stocks of the models
built with SDA.

6.3.2 Evaluated with MACD Prediction

Figure 6.9 shows the MACD prediction results. MACD is a trend-following momen-
tum indicator which was introduced in section 3.6. It also contains the information
of SMA and EMA. From figure, it can been seen that the DBN performs best in
MACD predictions for the tested companies, which is nearly 55%. It is a bit higher
than the accuracy of RNNRBM-DBN. The performance of these two models look
obviously higher than other models. All of the predication accuracy of the three
deep learning models are greater than compared baseline model SVM and RF. The
prediction accuracy of SDA, SVM and RF are nearly in the same level, with not
too much di↵erence to each other. Among them, SDA is a bit higher and RF is a
bit lower.

62

SDA DBN RNNRBM-DBN SVM RF

52

53

54

55

P
er
ce
nt
ag
e
(%

)

Average performance indicators of MACD prediction

MACD

Figure 6.9: This figure shows average prediction accuracy of each model on MACD
prediction. Each bar represents the prediction accuracy of the corresponding model
across all stocks. For example, the first bar means the average prediction accuracy
on all stocks of the models built with SDA.

63

Chapter 7

Conclusions and Future Works

In this last chapter, the theoretical study and analysis of this thesis are briefly
concluded. The main contributions of this project are discussed. After that, the
limitations of this work are presented and future work suggestions are given.

7.1 Conclusions

In this thesis, the importance of financial textual data for stock prediction was inves-
tigated with di↵erent types of machine learning models. Three deep learning models
were adapted to the stock prediction problem, their results were compared with two
classic machine learning models. After reviewing many natural language processing
papers and comparing some information retrieval methods, the pre-processing steps
were designed and implemented. The theoretical backgrounds of stacked denoising
autoencoder, deep belief network and the recurrent neural networks-restricted boltz-
mann machine were reviewed and re-summarized. After that, technique details of
the prediction models were designed. Overall, the following tasks were successfully
designed and implemented:

• A series of text pre-processing steps with natural language processing tech-
niques

• Chi-square key words selection

• Two pooling strategies to unify multiple articles of the same day.

• Tf-idf document normalization

• A set of financial indicators of prices for each textual article

• The stacked autoencoder based prediction model

• The deep belief network based prediction mode

• The RNN-RBM combined with DBN based prediction model

64

• A pipeline to use financial reports to predict the trend of stock prices

• A series of performance evaluation indicators

• Run experiments to determine the values of optimized parameters for each
model.

During the experiments of evaluation, the designed performance indicators were
used to evaluate the performance of the models in the following aspects:

• The prediction accuracy of each model for each company

• The sensitivity and confidence of up trend and down trend price prediction of
each model for each company

• The stability of price prediction of each model for each company

• The comparison of three deep learning models and two other classic machine
learning models (SVM and RF) with the previous defined performance indi-
cators.

Based on the implementation process and the experiment result of evaluations, the
following conclusion can be drawn:

• All the three deep learning models show a relative stable performance on pre-
diction accuracy, uptrend precision and downtrend precision, which indicates
that the confidence of the price prediction of both uptrend and downtrend
data are stable. (section 6.2.2,6.2.3, and 6.2.4)

• All the three deep learning models show a relative not stable performance
on uptredn recall and downtrend recall, which indicates the sensitivity of the
prediction are not relative not stable enough. (section 6.2.2,6.2.3 and 6.2.4)

• The DBD model shows that the prediction accuracy is most stable among the
performance indicators of DBN (section 6.2.3).

• The DBN shows that the performance on uptrend prediction is slightly more
stable than that on downtrend prediction, no matter in sensitivity or con-
fidence. It indicates that the DBN can give a more stable performance for
uptrend data for the given experiment data set (section 6.2.3).

• The uptrend predictions of DBN model are overall more stable than the down-
trend ones (section 6.2.3).

• The RNNRBM model have the same stability shape of the six performance
indicators as the DBN model, but the RNNRBM model have a overall higher
stability (section 6.2.4).

• RNNRBM show the highest prediction accuracy among the five models. The
prediction accuracy of the DBN moded is nearly the same as the RNNRBM
model (section 6.3.1).

65

• RNNRBM is most sensitive to downtrend prediction but least sensitive to
uptrend prediction (section 6.3.1).

• All the three deep learning models obtained a relatively good results compared
to SVM and RF on stock price trend prediction (section 6.3.1).

• The random forests model shows the most stable performance, and the over-
all stabilities of the three deep learning models are on the same level (sec-
tion 6.3.1).

• All five models shows a more stable performance on uptrend predictions than
downtrend predictions on price movement (section 6.3.1).

• For the MACD prediction, the DBN model shows the higher performance on
the prediction accuracy (section 6.3.2).

• All the three deep learning models still show a relatively good results compared
to SVM and RF on MACD movement prediction (section 6.3.1).

7.2 Final Remarks

Using a large number of experiments and a wide range of performance indicators,
we showed that incorporating textual information is indeed important for a more
precised prediction of stock price movement. The comparison between the perfor-
mance results of the five models showed that deep learning models have a potential
applicability in the context of stock trend prediction, especially for DBN and RNN-
RBM. However there are still some limitations of this work, which are discussed
below:

• Note that, to avoid the mixing the key factors that a↵ects the movement
of stock prices for di↵erent companies, we build models for each companies.
As introduced in the previous chapters, we used 8-K financial reports as the
input training data. However, the financial reports are not produced very
frequently, which means the size of training input data for each companies is
not large enough. Other types of financial articles listed in Table 2.2 can thus
be used.

• Although we showed that it is very useful to incorporate financial textual
analysis into the prediction of stock price movement, we do not claim that
the techniques and designed pipeline in this dissertation can satisfy the basis
of a viable trading strategy. Because some real-world obstacles to profitable
trading has not been considered into the model. At least, a convincing trading
model would overcome the restriction towards the following forms [23]:

– Transaction cost, such as bid-ask spreads

– Slippage, when large trading programs are executed when there may not
be enough profit as expected level

66

– Borrowing costs, the charge for taking on a debt obligation when a short
holding the securities predicted to go down.

Due to time constraints, the modelling of these events was beyond the topic
of this dissertation.

7.3 Future Work Directions

There are several directions to extend this thesis for future improvements:

• In this thesis, we only considered the impact of textual articles to the stock
price movement. To increase prediction accuracy, other traditional stock data
sources can be combined. For example, recent price movements, earnings
surprise, and so on.

• The optimization step for this project is based on experiments, grid search
and re-factory. A more advanced optimization approach can be researched in
the future.

• For each stock, five models were built. For each model, the parameters need
to be optimized to a su�ciently good level. However the optimization stage
to find a good set of parameters are really time consuming. Therefore, only
10 companies with largest report data were included in the experiments. The
future work can try more companies to extend the generality and validity of
the results.

• Due to time constraints, there are many types of technical financial indicators.
In this project, we only predict the price movement and MACD indicator
movement. The MACD indicators also contain the information of SMA and
EMA. In the future, other technical financial indicators can be evaluated.

67

Bibliography

[1] Technical indicators and overlays
. Available at: http://stockcharts.com/school/doku.php?id=chartschool :

technicalindicators.

[2] JG Agrawal, VS Chourasia, and AK Mittra. State-of-the-art in stock pre-
diction techniques. International Journal of Advanced Research in Electrical,
Electronics and Instrumentation Engineering, 2:1360–1366, 2013.

[3] Gerald Appel. Technical analysis: power tools for active investors. FT Press,
2005.

[4] Yoshua Bengio. Learning deep architectures for AI. Foundations and Trends in
Machine Learning, 2(1):1–127, 2009. Also published as a book. Now Publishers,
2009.

[5] Yoshua Bengio, Aaron Courville, and Pierre Vincent. Representation learning:
A review and new perspectives. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 35(8):1798–1828, 2013.

[6] Yoshua Bengio, Ian J. Goodfellow, and Aaron Courville. Deep learning. Book
in preparation for MIT Press, 2015.

[7] Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle, et al. Greedy
layer-wise training of deep networks. Advances in neural information processing
systems, 19:153, 2007.

[8] Yoshua Bengio, Yann LeCun, et al. Scaling learning algorithms towards ai.
Large-scale kernel machines, 34(5), 2007.

[9] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term depen-
dencies with gradient descent is di�cult. Neural Networks, IEEE Transactions
on, 5(2):157–166, 1994.

[10] James Bergstra, Frédéric Bastien, Olivier Breuleux, Pascal Lamblin, Razvan
Pascanu, Olivier Delalleau, Guillaume Desjardins, David Warde-Farley, Ian
Goodfellow, Arnaud Bergeron, et al. Theano: Deep learning on gpus with
python. In NIPS 2011, BigLearning Workshop, Granada, Spain, 2011.

[11] Christopher M Bishop. Pattern recognition and machine learning. springer,
2006.

68

[12] Johan Bollen, Huina Mao, and Xiaojun Zeng. Twitter mood predicts the stock
market. Journal of Computational Science, 2(1):1–8, 2011.

[13] Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua Bengio. Joint learn-
ing of words and meaning representations for open-text semantic parsing. In
International Conference on Artificial Intelligence and Statistics, pages 127–
135, 2012.

[14] Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. Model-
ing temporal dependencies in high-dimensional sequences: Application to poly-
phonic music generation and transcription. arXiv preprint arXiv:1206.6392,
2012.

[15] Y-Lan Boureau, Jean Ponce, and Yann LeCun. A theoretical analysis of fea-
ture pooling in visual recognition. In Proceedings of the 27th International
Conference on Machine Learning (ICML-10), pages 111–118, 2010.

[16] Alvin Chyan, Tim Hsieh, and Chris Lengerich. A stock-purchasing agent from
sentiment analysis of twitter. Stanford. edu. Retrieved on September, 2012.

[17] Dan Ciresan, Ueli Meier, and Jürgen Schmidhuber. Multi-column deep neural
networks for image classification. In Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on, pages 3642–3649. IEEE, 2012.

[18] Robert W Colby and Thomas A Meyers. The encyclopedia of technical market
indicators. Irwin New York, 1988.

[19] Jack G Conrad and Joanne RS Claussen. Early user—system interaction
for database selection in massive domain-specific online environments. ACM
Transactions on Information Systems (TOIS), 21(1):94–131, 2003.

[20] George E Dahl, Dong Yu, Li Deng, and Alex Acero. Context-dependent pre-
trained deep neural networks for large-vocabulary speech recognition. Audio,
Speech, and Language Processing, IEEE Transactions on, 20(1):30–42, 2012.

[21] Min Deng. Pattern and forecast of movement in stock price. Available at SSRN
217048, 2006.

[22] Dumitru Erhan, Pierre-Antoine Manzagol, Yoshua Bengio, Samy Bengio, and
Pascal Vincent. The di�culty of training deep architectures and the e↵ect of
unsupervised pre-training. In International Conference on artificial intelligence
and statistics, pages 153–160, 2009.

[23] Andrea Frazzini, Ronen Israel, and Tobias J Moskowitz. Trading costs of asset
pricing anomalies. Fama-Miller Working Paper, pages 14–05, 2012.

[24] Gyozo Gidófalvi and Charles Elkan. Using news articles to predict stock price
movements. Department of Computer Science and Engineering, University of
California, San Diego, 2001.

[25] Erkam Guresen, Gulgun Kayakutlu, and Tugrul U Daim. Using artificial neu-
ral network models in stock market index prediction. Expert Systems with
Applications, 38(8):10389–10397, 2011.

69

[26] Isabelle Guyon and André Elissee↵. An introduction to variable and feature
selection. The Journal of Machine Learning Research, 3:1157–1182, 2003.

[27] Geo↵rey Hinton. A practical guide to training restricted boltzmann machines.
Momentum, 9(1):926, 2010.

[28] Geo↵rey E Hinton. Connectionist learning procedures. artificial intelligence,
40 1-3: 185 234, 1989. reprinted in j. carbonell, editor,”. Machine Learning:
Paradigms and Methods”, MIT Press, 1990.

[29] Geo↵rey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algo-
rithm for deep belief nets. Neural computation, 18(7):1527–1554, 2006.

[30] Geo↵rey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality
of data with neural networks. Science, 313(5786):504–507, 2006.

[31] Geo↵rey E Hinton and Ruslan R Salakhutdinov. Replicated softmax: an undi-
rected topic model. In Advances in neural information processing systems,
pages 1607–1614, 2009.

[32] Tsung-Jung Hsieh, Hsiao-Fen Hsiao, and Wei-Chang Yeh. Forecasting stock
markets using wavelet transforms and recurrent neural networks: An inte-
grated system based on artificial bee colony algorithm. Applied soft computing,
11(2):2510–2525, 2011.

[33] Wei Huang, Yoshiteru Nakamori, and Shou-YangWang. Forecasting stock mar-
ket movement direction with support vector machine. Computers & Operations
Research, 32(10):2513–2522, 2005.

[34] Huseyin Ince and Theodore B Trafalis. Kernel principal component analysis
and support vector machines for stock price prediction. IIE Transactions,
39(6):629–637, 2007.

[35] Kiyoshi Izumi, Takashi Goto, and Tohgoroh Matsui. Trading tests of long-term
market forecast by text mining. In Data Mining Workshops (ICDMW), 2010
IEEE International Conference on, pages 935–942. IEEE, 2010.

[36] Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun.
What is the best multi-stage architecture for object recognition? In Computer
Vision, 2009 IEEE 12th International Conference on, pages 2146–2153. IEEE,
2009.

[37] Yakup Kara, Melek Acar Boyacioglu, and Ömer Kaan Baykan. Predicting
direction of stock price index movement using artificial neural networks and
support vector machines: The sample of the istanbul stock exchange. Expert
systems with Applications, 38(5):5311–5319, 2011.

[38] Kyoung-jae Kim and Ingoo Han. Genetic algorithms approach to feature dis-
cretization in artificial neural networks for the prediction of stock price index.
Expert systems with Applications, 19(2):125–132, 2000.

[39] Sung-Suk Kim. Time-delay recurrent neural network for temporal correlations
and prediction. Neurocomputing, 20(1):253–263, 1998.

70

[40] Manfred Kra↵t and Murali K Mantrala. Retailing in the 21st Century.
Springer, 2006.

[41] Alex Krizhevsky, Ilya Sutskever, and Geo↵rey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[42] Martin Längkvist, Lars Karlsson, and Amy Loutfi. A review of unsupervised
feature learning and deep learning for time-series modeling. Pattern Recogni-
tion Letters, 42:11–24, 2014.

[43] Hugo Larochelle, Yoshua Bengio, Jérôme Louradour, and Pascal Lamblin. Ex-
ploring strategies for training deep neural networks. The Journal of Machine
Learning Research, 10:1–40, 2009.

[44] Marcelo S Lauretto, Bárbara BC Silva, and Pablo M Andrade. Evaluation of
a supervised learning approach for stock market operations. arXiv preprint
arXiv:1301.4944, 2013.

[45] Victor Lavrenko, Matt Schmill, Dawn Lawrie, Paul Ogilvie, David Jensen,
and James Allan. Language models for financial news recommendation. In
Proceedings of the ninth international conference on Information and knowledge
management, pages 389–396. ACM, 2000.

[46] Victor Lavrenko, Matt Schmill, Dawn Lawrie, Paul Ogilvie, David Jensen,
and James Allan. Mining of concurrent text and time series. In KDD-2000
Workshop on Text Mining, pages 37–44. Citeseer, 2000.

[47] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of fea-
tures: Spatial pyramid matching for recognizing natural scene categories. In
Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Con-
ference on, volume 2, pages 2169–2178. IEEE, 2006.

[48] Heeyoung Lee, Mihai Surdeanu, Bill MacCartney, and Dan Jurafsky. On the
importance of text analysis for stock price prediction. Unpublished working
paper http://www. stanford. edu/˜ jurafsky/pubs/lrec2014 stocks. pdf, 2014.

[49] Xiaowei Lin, Zehong Yang, and Yixu Song. Short-term stock price prediction
based on echo state networks. Expert systems with applications, 36(3):7313–
7317, 2009.

[50] Andrew W Lo and Archie Craig MacKinlay. Stock market prices do not follow
random walks: Evidence from a simple specification test. Review of financial
studies, 1(1):41–66, 1988.

[51] Sam Mahfoud and Ganesh Mani. Financial forecasting using genetic algo-
rithms. Applied Artificial Intelligence, 10(6):543–566, 1996.

[52] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduc-
tion to information retrieval, volume 1. Cambridge university press Cambridge,
2008.

71

[53] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133,
1943.

[54] Anshul Mittal and Arpit Goel. Stock prediction us-
ing twitter sentiment analysis. Standford University,
CS229(2011 http://cs229. stanford. edu/proj2011/GoelMittal-
StockMarketPredictionUsingTwitterSentimentAnalysis. pdf), 2012.

[55] M-A Mittermayer. Forecasting intraday stock price trends with text mining
techniques. In System Sciences, 2004. Proceedings of the 37th Annual Hawaii
International Conference on, pages 10–pp. IEEE, 2004.

[56] Abdel-rahman Mohamed, Tara N Sainath, George Dahl, Bhuvana Ramabhad-
ran, Geo↵rey E Hinton, Michael Picheny, et al. Deep belief networks using
discriminative features for phone recognition. In Acoustics, Speech and Signal
Processing (ICASSP), 2011 IEEE International Conference on, pages 5060–
5063. IEEE, 2011.

[57] John J Murphy. Technical analysis of the financial markets: A comprehensive
guide to trading methods and applications. Penguin, 1999.

[58] Karl Nygren. Stock prediction–a neural network approach. Master’s Thesis,
Royal Institute of Technology, KTH, Stockholm, 2004.

[59] Phichhang Ou and Hengshan Wang. Prediction of stock market index move-
ment by ten data mining techniques. Modern Applied Science, 3(12):p28, 2009.

[60] Ping-Feng Pai and Chih-Sheng Lin. A hybrid arima and support vector ma-
chines model in stock price forecasting. Omega, 33(6):497–505, 2005.

[61] Christopher Poultney, Sumit Chopra, Yann L Cun, et al. E�cient learning
of sparse representations with an energy-based model. In Advances in neural
information processing systems, pages 1137–1144, 2006.

[62] David Martin Powers. Evaluation: from precision, recall and f-measure to roc,
informedness, markedness and correlation. 2011.

[63] Tobias Preis, Sebastian Golke, Wolfgang Paul, and Johannes J Schneider.
Multi-agent-based order book model of financial markets. EPL (Europhysics
Letters), 75(3):510, 2006.

[64] David E Rumelhart, Geo↵rey E Hinton, and Ronald J Williams. Learning
internal representations by error propagation. Technical report, DTIC Docu-
ment, 1985.

[65] David E Rumelhart, Geo↵rey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors, neurocomputing: foundations of
research, 1988.

[66] David E Rumelhart and James L McClelland. The pdp research group: Par-
allel distributed processing: Explorations in the microstructure of cognition.
Foundations, 1, 1986.

72

[67] DE Rumelhart, GE Hinton, and RJ Williams. Learning internal representa-
tions by error propagation, parallel distributed processing, explorations in the
microstructure of cognition, ed. de rumelhart and j. mcclelland. vol. 1. 1986,
1986.

[68] Ruslan Salakhutdinov, Andriy Mnih, and Geo↵rey Hinton. Restricted boltz-
mann machines for collaborative filtering. In Proceedings of the 24th interna-
tional conference on Machine learning, pages 791–798. ACM, 2007.

[69] Karsten Schierholt and Cihan H Dagli. Stock market prediction using di↵erent
neural network classification architectures. In Computational Intelligence for
Financial Engineering, 1996., Proceedings of the IEEE/IAFE 1996 Conference
on, pages 72–78. IEEE, 1996.

[70] Robert P Schumaker and Hsinchun Chen. Textual analysis of stock market
prediction using breaking financial news: The azfin text system. ACM Trans-
actions on Information Systems (TOIS), 27(2):12, 2009.

[71] Jianfeng Si, Arjun Mukherjee, Bing Liu, Qing Li, Huayi Li, and Xiaotie Deng.
Exploiting topic based twitter sentiment for stock prediction. In ACL (2),
pages 24–29, 2013.

[72] Karen Sparck Jones. A statistical interpretation of term specificity and its
application in retrieval. Journal of documentation, 28(1):11–21, 1972.

[73] Stephen V Stehman. Selecting and interpreting measures of thematic classifi-
cation accuracy. Remote sensing of Environment, 62(1):77–89, 1997.

[74] Ilya Sutskever, Geo↵rey E Hinton, and Graham W Taylor. The recurrent
temporal restricted boltzmann machine. In Advances in Neural Information
Processing Systems, pages 1601–1608, 2009.

[75] Leigh Tesfatsion and Kenneth L Judd. Handbook of computational economics:
agent-based computational economics, volume 2. Elsevier, 2006.

[76] Philip Treleaven, Michal Galas, and Vidhi Lalchand. Algorithmic trading re-
view. Communications of the ACM, 56(11):76–85, 2013.

[77] Chih-Fong Tsai and Yu-Chieh Hsiao. Combining multiple feature selection
methods for stock prediction: Union, intersection, and multi-intersection ap-
proaches. Decision Support Systems, 50(1):258–269, 2010.

[78] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Man-
zagol. Extracting and composing robust features with denoising autoencoders.
In Proceedings of the 25th international conference on Machine learning, pages
1096–1103. ACM, 2008.

[79] Paul John Werbos. The roots of backpropagation: from ordered derivatives to
neural networks and political forecasting, volume 1. John Wiley & Sons, 1994.

[80] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. arXiv
preprint arXiv:1410.3916, 2014.

73

[81] Martin Wiesmeier, Frauke Barthold, Benjamin Blank, and Ingrid Kögel-
Knabner. Digital mapping of soil organic matter stocks using random forest
modeling in a semi-arid steppe ecosystem. Plant and soil, 340(1-2):7–24, 2011.

[82] J Welles Wilder. New concepts in technical trading systems. Trend Research
Greensboro, NC, 1978.

[83] Akira Yoshihara, Kazuki Fujikawa, Kazuhiro Seki, and Kuniaki Uehara. Pre-
dicting stock market trends by recurrent deep neural networks. In PRICAI
2014: Trends in Artificial Intelligence, pages 759–769. Springer, 2014.

[84] Jianguo Zhang, Marcin Marsza lek, Svetlana Lazebnik, and Cordelia Schmid.
Local features and kernels for classification of texture and object categories: A
comprehensive study. International journal of computer vision, 73(2):213–238,
2007.

74

	Introduction
	Motivation
	Project Objectives
	Overview

	Background
	Financial Markets
	Data Sources
	Artificial Neural Network
	Perceptron
	Multilayer Perceptron
	Back-propagation Algorithm

	Deep Learning
	Building Deep Representations

	Data Pre-processing and Analysis
	Normalizing Text
	Text Feature Selection
	Chi-square
	Same Day Textual Data Compression
	Preprocessed Data Normalization
	Tf-idf
	IDF: Inverse Document Frequency

	Historical Data processing

	Deep Learning Models
	Stacked Denoising Autoencoders
	Autoencoders
	Denoising Autoencoders
	Stacked Autoencoder

	Deep Belief Networks
	Restricted Boltzmann Machines
	Deep Belief Networks

	The Recurrent Neural Networks-Restricted Boltzmann Machine
	The RTRBM
	The RNN-RBM
	Combination with DBN

	Implementation
	Implementation Overview
	Programming Language and External Library Used
	Bag-of-word Selection
	Same Day Textual Data Compression
	Historical Price Data Processing
	Model Building
	Pre-training process
	Fine-tuning process

	Experiment Results and Analysis
	Evaluation Metrics
	The Confusion Matrix
	Recall and Precision Rates
	F-measure
	Classification Performance
	Prediction Accuracy
	Stability of the Model

	Experiment Results and Analysis of Individual Deep Learning Model
	Experiment Setup
	Experiments of Stacked Denoising Autoencoder
	Experiments of Deep Belief Networks
	Experiments of RNNRBM-DBN

	Empirical Results and Analysis of All Models
	Evaluated with Price Prediction
	Evaluated with MACD Prediction

	Conclusions and Future Works
	Conclusions
	Final Remarks
	Future Work Directions

	Bibliography

